Top Articles (Article-Level Metrics)

 
 
Rank Article Tweets Tweets per MonthA
Tweets Influence FactorB
Twimpact Factor (tw7)C Twindex7D
 
41
Do Cancer Patients Tweet? Examining the Twitter Use of Cancer Patients in Japan
Atsushi Tsuya, Yuya Sugawara, Atsushi Tanaka, Hiroto Narimatsu
J Med Internet Res 2014;16(5):e137
(May 27, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
48 11.72 0.00 36 100
 
 
42
Mapping Physician Twitter Networks: Describing How They Work as a First Step in Understanding Connectivity, Information Flow, and Message Diffusion
Ranit Mishori, Lisa Oberoi Singh, Brendan Levy, Calvin Newport
J Med Internet Res 2014;16(4):e107
(Apr 14, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
63 11.49 0.00 41 95
 
 
43
Characterizing the Followers and Tweets of a Marijuana-Focused Twitter Handle
Patricia Cavazos-Rehg, Melissa Krauss, Richard Grucza, Laura Bierut
J Med Internet Res 2014;16(6):e157
(Jun 27, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
32 10.33 0.00 28 100
 
 
44
Purple: A Modular System for Developing and Deploying Behavioral Intervention Technologies
Stephen M Schueller, Mark Begale, Frank J Penedo, David C Mohr
J Med Internet Res 2014;16(7):e181
(Jul 30, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
19 9.35 0.00 16 90
 
 
45
The Role of Facebook in Crush the Crave, a Mobile- and Social Media-Based Smoking Cessation Intervention: Qualitative Framework Analysis of Posts
Laura Louise Struik, Neill Bruce Baskerville
J Med Internet Res 2014;16(7):e170
(Jul 11, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
22 8.32 0.00 21 95
 
 
46
How Can Research Keep Up With eHealth? Ten Strategies for Increasing the Timeliness and Usefulness of eHealth Research
Timothy B Baker, David H Gustafson, Dhavan Shah
J Med Internet Res 2014;16(2):e36
(Feb 19, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
60 8.30 0.00 45 95
 
 
47
Online Social Networks That Connect Users to Physical Activity Partners: A Review and Descriptive Analysis
Atul Nakhasi, Album Xiaotian Shen, Ralph Joseph Passarella, Lawrence J Appel, Cheryl AM Anderson
J Med Internet Res 2014;16(6):e153
(Jun 16, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
28 8.11 0.00 18 95
 
 
48
Health Domains for Sale: The Need for Global Health Internet Governance
Tim Ken Mackey, Bryan A Liang, Jillian C Kohler, Amir Attaran
J Med Internet Res 2014;16(3):e62
(Mar 5, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
53 7.82 0.00 46 100
 
 
49
Collaborative Biomedicine in the Age of Big Data: The Case of Cancer
Abdul R Shaikh, Atul J Butte, Sheri D Schully, William S Dalton, Muin J Khoury, Bradford W Hesse
J Med Internet Res 2014;16(4):e101
(Apr 7, 2014)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
43 7.53 0.00 38 95
 
 
50
Enabling Community Through Social Media
Anatoliy Gruzd, Caroline Haythornthwaite
J Med Internet Res 2013;15(10):e248
(Oct 31, 2013)
HTML free!
PDF ($22 pay-per-download, free for members [$4.92/mo.]
80 7.40 189.00 40 95
 
 
<< < 2  3  4  5 6  7  > >>
 
Total Tweets
 
Tweets per Month
 
Tweets Influence Factor
 
Twimpact Factor (TWIF) tw7
 
Twindex7

A Tweets per month statistic may be artifically inflated for newly published articles

B Tweets Influence Factor (TIF): number of tweets x avg. influence of tweeters (influence is determined by how often all tweets of that person are retweeted by others)

C Twimpact Factor (TWIF) tw7: Number of mentionings in tweets (tweetations) within first 7 days after article publication (Eysenbach 2011)

D Twindex7 (Eysenbach 2011): Rank percentile of this article when its twimpact factor (tw7) is compared to 19 previously published articles. Range 0-100, with higher scores reflecting higher impact on Twitter. Articles with a Twindex greater than 75 have a 75% chance of being highly cited (top quartile by citation), articles with a Twindex less than 75 have a 7% chance to be highly cited.