The Karma system is currently undergoing maintenance (Monday, January 29, 2018).
The maintenance period has been extended to 8PM EST.

Karma Credits will not be available for redeeming during maintenance.

Journal of Medical Internet Research

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 15.07.15 in Vol 17, No 7 (2015): July

This paper is in the following e-collection/theme issue:

Works citing "Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.4273):

(note that this is only a small subset of citations)

  1. Becker D, van Breda W, Funk B, Hoogendoorn M, Ruwaard J, Riper H. Predictive modeling in e-mental health: A common language framework. Internet Interventions 2018;12:57
    CrossRef
  2. Barrigón ML, Baca-García E. Current challenges in research on suicide. Revista de Psiquiatría y Salud Mental (English Edition) 2018;11(1):1
    CrossRef
  3. Kennedy SH, Ceniti AK. Unpacking Major Depressive Disorder: From Classification to Treatment Selection. The Canadian Journal of Psychiatry 2018;63(5):308
    CrossRef
  4. Helbich M. Toward dynamic urban environmental exposure assessments in mental health research. Environmental Research 2018;161:129
    CrossRef
  5. Frank E, Pong J, Asher Y, Soares CN. Smart phone technologies and ecological momentary data. Current Opinion in Psychiatry 2018;31(1):3
    CrossRef
  6. Cornet VP, Holden RJ. Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics 2018;77:120
    CrossRef
  7. Scott SB, Munoz E, Mogle JA, Gamaldo AA, Smyth JM, Almeida DM, Sliwinski MJ. Perceived neighborhood characteristics predict severity and emotional response to daily stressors. Social Science & Medicine 2018;200:262
    CrossRef
  8. Craske MG. Honoring the Past, Envisioning the Future: ABCT’s 50th Anniversary Presidential Address. Behavior Therapy 2018;49(2):151
    CrossRef
  9. Bourla A, Mouchabac S, El Hage W, Ferreri F. e-PTSD: an overview on how new technologies can improve prediction and assessment of Posttraumatic Stress Disorder (PTSD). European Journal of Psychotraumatology 2018;9(sup1):1424448
    CrossRef
  10. Bourla A, Ferreri F, Ogorzelec L, Guinchard C, Mouchabac S. Évaluation des troubles thymiques par l’étude des données passives : le concept de phénotype digital à l’épreuve de la culture de métier de psychiatre. L'Encéphale 2018;44(2):168
    CrossRef
  11. Roberts LW, Chan S, Torous J. New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis. npj Digital Medicine 2018;1(1)
    CrossRef
  12. Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology 2018;
    CrossRef
  13. Renn BN, Pratap A, Atkins DC, Mooney SD, Areán PA. Smartphone-based passive assessment of mobility in depression: Challenges and opportunities. Mental Health and Physical Activity 2018;14:136
    CrossRef
  14. Shaffer JA, Kronish IM, Falzon L, Cheung YK, Davidson KW. N-of-1 Randomized Intervention Trials in Health Psychology: A Systematic Review and Methodology Critique. Annals of Behavioral Medicine 2018;
    CrossRef
  15. Reinertsen E, Clifford GD. A review of physiological and behavioral monitoring with digital sensors for neuropsychiatric illnesses. Physiological Measurement 2018;39(5):05TR01
    CrossRef
  16. Barrigón ML, Baca-García E. Retos actuales en la investigación en suicidio. Revista de Psiquiatría y Salud Mental 2018;11(1):1
    CrossRef
  17. Lu J, Bi J, Shang C, Yue C, Morillo R, Ware S, Kamath J, Bamis A, Russell A, Wang B. Joint Modeling of Heterogeneous Sensing Data for Depression Assessment via Multi-task Learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(1):1
    CrossRef
  18. Berrouiguet S, Perez-Rodriguez MM, Larsen M, Baca-García E, Courtet P, Oquendo M. From eHealth to iHealth: Transition to Participatory and Personalized Medicine in Mental Health. Journal of Medical Internet Research 2018;20(1):e2
    CrossRef
  19. Kleiman EM, Nock MK. Real-time assessment of suicidal thoughts and behaviors. Current Opinion in Psychology 2018;22:33
    CrossRef
  20. Malhi GS, Hamilton A, Morris G, Mannie Z, Das P, Outhred T. The promise of digital mood tracking technologies: are we heading on the right track?. Evidence Based Mental Health 2017;20(4):102
    CrossRef
  21. Mohr DC, Zhang M, Schueller SM. Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annual Review of Clinical Psychology 2017;13(1):23
    CrossRef
  22. Mandryk RL, Birk MV. Toward Game-Based Digital Mental Health Interventions: Player Habits and Preferences. Journal of Medical Internet Research 2017;19(4):e128
    CrossRef
  23. Leonard NR, Silverman M, Sherpa DP, Naegle MA, Kim H, Coffman DL, Ferdschneider M. Mobile Health Technology Using a Wearable Sensorband for Female College Students With Problem Drinking: An Acceptability and Feasibility Study. JMIR mHealth and uHealth 2017;5(7):e90
    CrossRef
  24. Aguilera A, Bruehlman-Senecal E, Demasi O, Avila P. Automated Text Messaging as an Adjunct to Cognitive Behavioral Therapy for Depression: A Clinical Trial. Journal of Medical Internet Research 2017;19(5):e148
    CrossRef
  25. Bhugra D, Tasman A, Pathare S, Priebe S, Smith S, Torous J, Arbuckle MR, Langford A, Alarcón RD, Chiu HFK, First MB, Kay J, Sunkel C, Thapar A, Udomratn P, Baingana FK, Kestel D, Ng RMK, Patel A, Picker LD, McKenzie KJ, Moussaoui D, Muijen M, Bartlett P, Davison S, Exworthy T, Loza N, Rose D, Torales J, Brown M, Christensen H, Firth J, Keshavan M, Li A, Onnela J, Wykes T, Elkholy H, Kalra G, Lovett KF, Travis MJ, Ventriglio A. The WPA- Lancet Psychiatry Commission on the Future of Psychiatry. The Lancet Psychiatry 2017;4(10):775
    CrossRef
  26. Dogan E, Sander C, Wagner X, Hegerl U, Kohls E. Smartphone-Based Monitoring of Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We Going? Systematic Review. Journal of Medical Internet Research 2017;19(7):e262
    CrossRef
  27. DeMasi O, Kording K, Recht B, Jan Y. Meaningless comparisons lead to false optimism in medical machine learning. PLOS ONE 2017;12(9):e0184604
    CrossRef
  28. Ram N, Brinberg M, Pincus AL, Conroy DE. The Questionable Ecological Validity of Ecological Momentary Assessment: Considerations for Design and Analysis. Research in Human Development 2017;14(3):253
    CrossRef
  29. Webb CA, Rosso IM, Rauch SL. Internet-Based Cognitive-Behavioral Therapy for Depression. Harvard Review of Psychiatry 2017;25(3):114
    CrossRef
  30. Place S, Blanch-Hartigan D, Rubin C, Gorrostieta C, Mead C, Kane J, Marx BP, Feast J, Deckersbach T, Pentland A, Nierenberg A, Azarbayejani A. Behavioral Indicators on a Mobile Sensing Platform Predict Clinically Validated Psychiatric Symptoms of Mood and Anxiety Disorders. Journal of Medical Internet Research 2017;19(3):e75
    CrossRef
  31. Saeb S, Lattie EG, Kording KP, Mohr DC. Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety. JMIR mHealth and uHealth 2017;5(8):e112
    CrossRef
  32. Bidargaddi N, Musiat P, Makinen V, Ermes M, Schrader G, Licinio J. Digital footprints: facilitating large-scale environmental psychiatric research in naturalistic settings through data from everyday technologies. Molecular Psychiatry 2017;22(2):164
    CrossRef
  33. Torous J, Rodriguez J, Powell A. The New Digital Divide For Digital Biomarkers. Digital Biomarkers 2017;
    CrossRef
  34. Palmius N, Tsanas A, Saunders KEA, Bilderbeck AC, Geddes JR, Goodwin GM, De Vos M. Detecting Bipolar Depression From Geographic Location Data. IEEE Transactions on Biomedical Engineering 2017;64(8):1761
    CrossRef
  35. Saeb S, Cybulski TR, Kording KP, Mohr DC. Scalable Passive Sleep Monitoring Using Mobile Phones: Opportunities and Obstacles. Journal of Medical Internet Research 2017;19(4):e118
    CrossRef
  36. Luhmann M. Using Big Data to study subjective well-being. Current Opinion in Behavioral Sciences 2017;18:28
    CrossRef
  37. Bauer M, Glenn T, Monteith S, Bauer R, Whybrow PC, Geddes J. Ethical perspectives on recommending digital technology for patients with mental illness. International Journal of Bipolar Disorders 2017;5(1)
    CrossRef
  38. Chow PI, Fua K, Huang Y, Bonelli W, Xiong H, Barnes LE, Teachman BA. Using Mobile Sensing to Test Clinical Models of Depression, Social Anxiety, State Affect, and Social Isolation Among College Students. Journal of Medical Internet Research 2017;19(3):e62
    CrossRef
  39. Aung MH, Matthews M, Choudhury T. Sensing behavioral symptoms of mental health and delivering personalized interventions using mobile technologies. Depression and Anxiety 2017;34(7):603
    CrossRef
  40. Turvey C, Fortney J. The Use of Telemedicine and Mobile Technology to Promote Population Health and Population Management for Psychiatric Disorders. Current Psychiatry Reports 2017;19(11)
    CrossRef
  41. Stachl C, Hilbert S, Au J, Buschek D, De Luca A, Bischl B, Hussmann H, Bühner M, Wrzus C. Personality Traits Predict Smartphone Usage. European Journal of Personality 2017;31(6):701
    CrossRef
  42. Tuarob S, Tucker CS, Kumara S, Giles CL, Pincus AL, Conroy DE, Ram N. How are you feeling?: A personalized methodology for predicting mental states from temporally observable physical and behavioral information. Journal of Biomedical Informatics 2017;68:1
    CrossRef
  43. Low CA, Dey AK, Ferreira D, Kamarck T, Sun W, Bae S, Doryab A. Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study. Journal of Medical Internet Research 2017;19(12):e420
    CrossRef
  44. Wang W. Smartphones as Social Actors? Social dispositional factors in assessing anthropomorphism. Computers in Human Behavior 2017;68:334
    CrossRef
  45. Cuttone A, Bækgaard P, Sekara V, Jonsson H, Larsen JE, Lehmann S, Zhou W. SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events. PLOS ONE 2017;12(1):e0169901
    CrossRef
  46. Faherty LJ, Hantsoo L, Appleby D, Sammel MD, Bennett IM, Wiebe DJ. Movement patterns in women at risk for perinatal depression: use of a mood-monitoring mobile application in pregnancy. Journal of the American Medical Informatics Association 2017;24(4):746
    CrossRef
  47. Aledavood T, Triana Hoyos AM, Alakörkkö T, Kaski K, Saramäki J, Isometsä E, Darst RK. Data Collection for Mental Health Studies Through Digital Platforms: Requirements and Design of a Prototype. JMIR Research Protocols 2017;6(6):e110
    CrossRef
  48. Torous J, Levin ME, Ahern DK, Oser ML. Cognitive Behavioral Mobile Applications: Clinical Studies, Marketplace Overview, and Research Agenda. Cognitive and Behavioral Practice 2017;24(2):215
    CrossRef
  49. Sarikaya R. The Technology Behind Personal Digital Assistants: An overview of the system architecture and key components. IEEE Signal Processing Magazine 2017;34(1):67
    CrossRef
  50. DeMasi O, Feygin S, Dembo A, Aguilera A, Recht B. Well-Being Tracking via Smartphone-Measured Activity and Sleep: Cohort Study. JMIR mHealth and uHealth 2017;5(10):e137
    CrossRef
  51. Harari GM, Müller SR, Mishra V, Wang R, Campbell AT, Rentfrow PJ, Gosling SD. An Evaluation of Students’ Interest in and Compliance With Self-Tracking Methods. Social Psychological and Personality Science 2017;8(5):479
    CrossRef
  52. Sabharwal A, Veeraraghavan A. Bio-Behavioral Sensing. GetMobile: Mobile Computing and Communications 2017;21(3):11
    CrossRef
  53. Johansen B, Petersen M, Korzepa M, Larsen J, Pontoppidan N, Larsen J. Personalizing the Fitting of Hearing Aids by Learning Contextual Preferences From Internet of Things Data. Computers 2017;7(1):1
    CrossRef
  54. Fairburn CG, Patel V. The impact of digital technology on psychological treatments and their dissemination. Behaviour Research and Therapy 2017;88:19
    CrossRef
  55. Balicer RD, Luengo-Oroz M, Cohen-Stavi C, Loyola E, Mantingh F, Romanoff L, Galea G. Using big data for non-communicable disease surveillance. The Lancet Diabetes & Endocrinology 2017;
    CrossRef
  56. Bruehlman-Senecal E, Aguilera A, Schueller SM. Mobile Phone–Based Mood Ratings Prospectively Predict Psychotherapy Attendance. Behavior Therapy 2017;48(5):614
    CrossRef
  57. Harari GM, Müller SR, Aung MS, Rentfrow PJ. Smartphone sensing methods for studying behavior in everyday life. Current Opinion in Behavioral Sciences 2017;18:83
    CrossRef
  58. Saeb S, Lattie EG, Schueller SM, Kording KP, Mohr DC. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 2016;4:e2537
    CrossRef
  59. Armontrout J, Torous J, Fisher M, Drogin E, Gutheil T. Mobile Mental Health: Navigating New Rules and Regulations for Digital Tools. Current Psychiatry Reports 2016;18(10)
    CrossRef
  60. Arean PA, Hallgren KA, Jordan JT, Gazzaley A, Atkins DC, Heagerty PJ, Anguera JA. The Use and Effectiveness of Mobile Apps for Depression: Results From a Fully Remote Clinical Trial. Journal of Medical Internet Research 2016;18(12):e330
    CrossRef
  61. Torous J, Kiang MV, Lorme J, Onnela J. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Mental Health 2016;3(2):e16
    CrossRef
  62. Hung GC, Yang P, Chang C, Chiang J, Chen Y. Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study. JMIR Research Protocols 2016;5(3):e160
    CrossRef
  63. Huguet A, Rao S, McGrath PJ, Wozney L, Wheaton M, Conrod J, Rozario S, Choo KR. A Systematic Review of Cognitive Behavioral Therapy and Behavioral Activation Apps for Depression. PLOS ONE 2016;11(5):e0154248
    CrossRef
  64. Christensen MA, Bettencourt L, Kaye L, Moturu ST, Nguyen KT, Olgin JE, Pletcher MJ, Marcus GM, Romigi A. Direct Measurements of Smartphone Screen-Time: Relationships with Demographics and Sleep. PLOS ONE 2016;11(11):e0165331
    CrossRef
  65. Aung MSH, Alquaddoomi F, Hsieh C, Rabbi M, Yang L, Pollak JP, Estrin D, Choudhury T. Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain. IEEE Journal of Selected Topics in Signal Processing 2016;10(5):962
    CrossRef
  66. Hird N, Ghosh S, Kitano H. Digital health revolution: perfect storm or perfect opportunity for pharmaceutical R&D?. Drug Discovery Today 2016;21(6):900
    CrossRef
  67. Wicks P, Hotopf M, Narayan VA, Basch E, Weatherall J, Gray M. It’s a long shot, but it just might work! Perspectives on the future of medicine. BMC Medicine 2016;14(1)
    CrossRef
  68. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. Major depressive disorder. Nature Reviews Disease Primers 2016;2:16065
    CrossRef
  69. Asselbergs J, Ruwaard J, Ejdys M, Schrader N, Sijbrandij M, Riper H. Mobile Phone-Based Unobtrusive Ecological Momentary Assessment of Day-to-Day Mood: An Explorative Study. Journal of Medical Internet Research 2016;18(3):e72
    CrossRef
  70. Kamilaris A, Pitsillides A. Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal 2016;3(6):885
    CrossRef
  71. Harari GM, Lane ND, Wang R, Crosier BS, Campbell AT, Gosling SD. Using Smartphones to Collect Behavioral Data in Psychological Science. Perspectives on Psychological Science 2016;11(6):838
    CrossRef
  72. Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild. JMIR mHealth and uHealth 2016;4(3):e111
    CrossRef
  73. Suffoletto B, Aguilera A. Expanding Adolescent Depression Prevention Through Simple Communication Technologies. Journal of Adolescent Health 2016;59(4):373
    CrossRef
  74. Kang Y. Ontology Components for the Depression Management based on Context. Journal of the Korea Institute of Information and Communication Engineering 2016;20(9):1785
    CrossRef
  75. Kirchner TR, Shiffman S. Spatio-temporal determinants of mental health and well-being: advances in geographically-explicit ecological momentary assessment (GEMA). Social Psychiatry and Psychiatric Epidemiology 2016;51(9):1211
    CrossRef
  76. Miloff A, Marklund A, Carlbring P. The challenger app for social anxiety disorder: New advances in mobile psychological treatment. Internet Interventions 2015;2(4):382
    CrossRef
  77. Aledavood T, Lehmann S, Saramäki J. Digital daily cycles of individuals. Frontiers in Physics 2015;3
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.4273)

:
  1. Derksen JJL. Preventie psychische aandoeningen. 2018. Chapter 2:31
    CrossRef
  2. Singh VK, Ghosh I. Encyclopedia of Behavioral Medicine. 2018. Chapter 102005-1:1
    CrossRef
  3. Cho A, Lee H, Hwang H, Jo Y, Whang M. Advances in Computer Science and Ubiquitous Computing. 2018. Chapter 218:1371
    CrossRef
  4. Lee H, Jo Y, Kim H, Whang M. Advances in Computer Science and Ubiquitous Computing. 2018. Chapter 219:1377
    CrossRef
  5. Wolfer J. Online Engineering & Internet of Things. 2018. Chapter 63:672
    CrossRef
  6. Lee H, Cho A, Jo Y, Whang M. Advances in Computer Science and Ubiquitous Computing. 2018. Chapter 212:1332
    CrossRef
  7. Duke , Montag C. Internet Addiction. 2017. Chapter 21:359
    CrossRef
  8. Rabbi M, Hane Aung M, Choudhury T. Mobile Health. 2017. Chapter 26:519
    CrossRef
  9. Klaas VC, Calatroni A, Hardegger M, Guckenberger M, Theile G, Tröster G. Wireless Mobile Communication and Healthcare. 2017. Chapter 28:207
    CrossRef
  10. Losada DE, Crestani F. Experimental IR Meets Multilinguality, Multimodality, and Interaction. 2016. Chapter 3:28
    CrossRef
  11. Vayena E, Gasser U. The Ethics of Biomedical Big Data. 2016. Chapter 2:17
    CrossRef