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Abstract

Background: Diabetic retinopathy (DR) is a leading cause of vision loss in working age individuals worldwide. While screening
is effective and cost effective, it remains underutilized, and novel methods are needed to increase detection of DR. This clinical
validation study compared diagnostic gradings of retinal fundus photographs provided by volunteers on the Amazon Mechanical
Turk (AMT) crowdsourcing marketplace with expert-provided gold-standard grading and explored whether determination of the
consensus of crowdsourced classifications could be improved beyond a simple majority vote (MV) using regression methods.

Objective: The aim of our study was to determine whether regression methods could be used to improve the consensus grading
of data collected by crowdsourcing.

Methods: A total of 1200 retinal images of individuals with diabetes mellitus from the Messidor public dataset were posted to
AMT. Eligible crowdsourcing workers had at least 500 previously approved tasks with an approval rating of 99% across their
prior submitted work. A total of 10 workers were recruited to classify each image as normal or abnormal. If half or more workers
judged the image to be abnormal, the MV consensus grade was recorded as abnormal. Rasch analysis was then used to calculate
worker ability scores in a random 50% training set, which were then used as weights in a regression model in the remaining 50%
test set to determine if a more accurate consensus could be devised. Outcomes of interest were the percent correctly classified
images, sensitivity, specificity, and area under the receiver operating characteristic (AUROC) for the consensus grade as compared
with the expert grading provided with the dataset.

Results: Using MV grading, the consensus was correct in 75.5% of images (906/1200), with 75.5% sensitivity, 75.5% specificity,
and an AUROC of 0.75 (95% CI 0.73-0.78). A logistic regression model using Rasch-weighted individual scores generated an
AUROC of 0.91 (95% CI 0.88-0.93) compared with 0.89 (95% CI 0.86-92) for a model using unweighted scores (chi-square P
value<.001). Setting a diagnostic cut-point to optimize sensitivity at 90%, 77.5% (465/600) were graded correctly, with 90.3%
sensitivity, 68.5% specificity, and an AUROC of 0.79 (95% CI 0.76-0.83).

Conclusions: Crowdsourced interpretations of retinal images provide rapid and accurate results as compared with a gold-standard
grading. Creating a logistic regression model using Rasch analysis to weight crowdsourced classifications by worker ability
improves accuracy of aggregated grades as compared with simple majority vote.

(J Med Internet Res 2017;19(6):e222) doi: 10.2196/jmir.7984
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Introduction

Overview
Diabetes mellitus (DM) is a highly prevalent disease affecting
over 415 million individuals worldwide, 80% of whom reside
in low- and middle-income countries [1]. By 2040, the
prevalence of DM is expected to reach 642 million, with the
largest increases seen in countries with developing economies
[1]. In the United States, 21.0 million people had known diabetes
in 2012 and another 8.1 million had undiagnosed diabetes [2].
Diabetic retinopathy (DR) is an important complication of DM,
currently affecting approximately 93 million people worldwide,
with 28 million of these suffering from vision-threatening DR
[3]. It is estimated that the number of Americans with DR will
reach 16 million by 2050, with 3.4 million of these individuals
afflicted with vision-threatening DR [4].

While DR is the leading cause of vision loss in working age
individuals [4], screening for DR is an effective and
cost-effective means of identifying the disease early, referring
affected individuals for appropriate therapies, and preventing
vision loss [5-8]. Despite the increasing prevalence of DR, the
annual increase in the number of practicing ophthalmologists
is only 2% [9], largely in high-income countries [10]. As a way
of overcoming human resource shortfalls and in order to increase
adherence with DR screening recommendations more broadly,
telehealth programs using nonmydriatic fundus photography
and remote interpretation are increasing [11-13].

In addition to improving screening uptake, telehealth may
provide ways to reduce provider, payer, and societal costs
[14-16]. Among the costs of a telehealth program for DR
screening are the fundus camera, the telehealth software
package, and the human resources needed for image acquisition
and interpretation. Fundus photo interpretation costs in DR
screening may be high given labor-intensive interpretation
protocols and the need to interpret multiple images per patient.
Computerized, semiautomated image analysis techniques have
been developed which may be able to reduce physician workload
and screening costs [17-19]; however, these methods are not
approved by the US Food and Drug Administration nor in wide
use clinically at this time. As telehealth expansion continues,
novel low-cost methods will be needed to interpret the large
volume of fundus images expected with rising incidence of
diabetes, especially in resource-poor settings and in large public
health screenings.

The use of crowdsourcing in biomedical research is in its
infancy, although some groups have used this method in public
health research [20] and to interpret biomedical images [21,22].
Crowdsourcing has been used to categorize a number of fundus
photos with a variety of diagnoses as normal or abnormal [23].
In a trial conducted in the United Kingdom using untrained
graders, the sensitivity was ≥96% for normal versus severely
abnormal and from 61% to 79% for normal versus mildly
abnormal [23]. In a proof-of-concept study, we have
demonstrated that untrained crowdsourced workers can rapidly
and accurately identify images with DR [24]. We have also
demonstrated that crowdsourcing workers can improve their
ability to identify characteristic glaucomatous changes in optic

nerve photographs [25]. In this study we seek to perform an
external validation of our method of crowdsourcing DR
identification using a public dataset of 1200 retinal photographs
and explore methods of improving the determination of a
consensus score from multiple individual crowdsourced grades
including creating a logistic regression model that includes other
data points collected at the time of the grading and a second
model that weights the responses of graders based on ability in
a training dataset using the Rasch model.

Crowdsourcing Background
Crowdsourcing is “an online, distributed problem-solving and
production model that leverages the collective intelligence of
online communities to serve specific organizational goals” [26].
Distributed human intelligence tasking [26], a subset of
crowdsourcing, can involve subdividing larger tasks into small
portions and then recruiting a group of individuals to each
complete these small portions, and only collectively, the entire
task. Amazon Mechanical Turk (AMT) is an online distributed
human intelligence market that allows access to thousands of
people who can quickly accomplish small, discrete tasks for
small amounts of money. Typical AMT tasks include tagging
photos, translating words, or writing very short articles for
websites. AMT has its own vocabulary used by workers
(Turkers) and task administrators (Requestors). A human
intelligence task (HIT) is a small job which may be performed
in a matter of seconds or minutes and, once the work is approved
by the Requestor, may pay $0.01 to $0.25 or more per task
depending on the complexity of the HIT. A group of HITs is
called a batch and is made up of similar HITs. Depending on
the complexity of the task and the payment offered by the
Requestor, a batch is often completed within minutes or hours
of posting [27]. One particular application in the recent literature
has been the use of crowdsourcing to generate ground-truth
annotations for deep learning algorithm training and validation
[28], which have themselves been recently demonstrated to be
quite effective at DR retinal image classification [28,29]. Other
types of crowdsourcing such as broadcast search have also been
applied to retinal image grading through a 2015 Kaggle
competition [30].

Finding the Consensus Grade
Several methods for aggregating multiple grades into a
consensus score have been described in the biomedical literature,
dating back several decades [31]. The simplest method, termed
majority vote (MV), involves promoting the modal response to
the crowdsourced determination, as described in Whitehill et
al [32]. In a binary classification scheme, whichever response
is selected by half or more of respondents becomes the
consensus. While this approach is computationally simple, the
differential ability of workers is ignored as is differential
difficulty of the unique tasks. Therefore, other methods of
aggregating scores have been explored that rely on patterns of
individual worker responses over multiple tasks and comparisons
with or incorporation with expert annotations where available
[22,32-36]. Additionally, several investigators have explored
incorporation of artificial intelligence or deep learning
methodologies to aggregation of data [37]. Others have turned
to methods of item response theory to improve aggregation by
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specifically looking for inattentive or malicious users and
eliminating their data [38]. In this study, we hypothesized an
improved consensus grade would be found using Rasch
analysis–determined weights applied to logistic regression
models.

Methods

Crowdsourcing Platform
An interface for fundus photo classification has been previously
described for the AMT crowdsourcing platform [24]. The United
Kingdom national screening program grading scale [39] was
chosen due its broad clinical telemedicine deployment. For the
purposes of the study, terms from this scale were translated into
plain language: background retinopathy was called mild,
preproliferative retinopathy was called moderate, and
proliferative retinopathy was called severe. Maculopathy is
defined as abnormal on a training image with otherwise
moderate disease but is not coded separately. The AMT interface
was designed to provide training on grading of DR within each
HIT. This training includes 7 images annotated with the salient
features of each level of retinopathy in plain language. Turkers
are presented with the following text: “This is a photo of the
inside of the eye. We are looking to label eyes as healthy or
unhealthy with respect to diabetes. Rate this eye.” Turkers can
hover their mouse over the adjacent training images (2 normal,
1 mild, 1 moderate, 3 severe) while reviewing the active test
image (Multimedia Appendix 1). This layout allows for all of
the training and grading to occur in one browser window.
Turkers receive US $0.10 per image, with a 40% commission
going to Amazon, for a total cost of US $1.40 per image.

Baseline Trial with Majority Vote Analysis
For the first phase of this project, 1200 images from the
Messidor public dataset [40] were posted for 10 unique binary
annotations to provide external validation of the prior
proof-of-concept study (yielding a dataset of n=12,000). We
previously found 10 annotations per image appears to produce
the maximal area under the receiver operating characteristic
(AUROC), with little benefit seen for >10 gradings per image
[24]. The Messidor dataset is composed of 800 mydriatic and
400 nonmydriatic retinal fundus photos of universally high
quality and resolution. The images are supplied with ground
truth grading on the following scale:

• 0—normal: no microaneurysms, no hemorrhages (n=546)

• 1—1-5 microaneurysms, but no hemorrhages (n=153)
• 2—6-14 microaneurysms OR 1-4 hemorrhages, but no

neovascularization (n=247)
• 3—15 or more microaneurysms OR 5 or more hemorrhages

OR presence of neovascularization (n=254)

For the purposes of this study, the presence of 5 or fewer
microaneurysms was felt to be clinically insignificant and thus
we classified Messidor 0 and 1 images as normal (58%, n=699)
and Messidor 2 and 3 images as abnormal (42%, n=501), to
mimic the accuracy of an American Telemedicine Association
Category 1 screening program [41]. Turkers were not made
aware of the source of the images.

To create the MV consensus, each image was assigned the grade
of abnormal if half or more Turkers deemed an image abnormal,
otherwise the image was classified as normal. Sensitivity,
specificity, and AUROC were calculated. This batch and grading
scheme served as the baseline results for comparison with the
regression models used in later phases of the research.

As there was no a priori rationale to suggest that the mean
Turker score (with rounding toward abnormal) would provide
the most accurate approximation of the ground truth
classification, additional methods of generating consensus were
explored.

Weighted Logistic Regression Model
For this phase, we recognized that among Turkers there is a
range of ability, and among images there is a range of difficulty.
In order to improve throughput, Turkers were asked to grade
images in multiples of 10 (rather than single images), and to
collect more data about the Turkers’ interactions with the task
for future phases, the project was migrated to a new online
interface using Volunteer Science (Multimedia Appendix 2).
In the new interface, the 1200 Messidor images were posted for
binary grading first using the full color images and then again
with the images converted to grayscale with the red color
channel removed in Adobe Lightroom (applied B&W Preset
with green filter, in B&W Mix reduce red to –75) (Figure 1).
This was done to simulate red-free images, which may allow
for better detection of DR [42]. This allowed us to have a dataset
with up to 30 grades per image across the 3 different batches
(baseline, phase 2 color, and phase 2 black and white), albeit
captured under slightly different circumstances. Throughout,
Turkers were paid $0.10 per image.
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Figure 1. Example color image and simulated red-free retinal photograph created by deleting the red channel in Adobe Lightroom.

The dataset of 1200 images was randomly divided into 600
training and 600 test images. The distribution of Messidor
categories within these 2 subsets was within 2% of the entire
dataset. Using the training images, a matrix of images and
individual Turkers was created with each cell either being a
missing datapoint (if that particular Turker did not grade that
particular image), a 1 for a correct classification, or a 0 for an
incorrect classification. Rasch analysis was then performed to
determine the image measures and Turker measures based solely
on the information in this matrix in the training set (see Figure
2 for the Rasch model [43], where, in this study, Pni is the
probability of a given image n of difficulty Bn having a correct
response provided by Turker i of skill level Di). Therefore, the
Turker’s ability measure and the image’s difficulty measure are
expressed as log-odds units (logits), theoretically ranging from
–∞ to +∞. The negative exponentiated Turker ability measure,
then, is the odds that an image of average difficulty (ie, Bn=0)

would be categorized correctly by that particular Turker. This
value was then multiplied by each of that Turker’s
categorizations from the test set (with abnormal =1, normal
=–1). The weighted scores were then summed for each image.
In an initial analysis, the consensus image score was considered
to be abnormal if greater than or equal to zero and normal
otherwise. Sensitivity, specificity, and AUROC were calculated
as above with comparison to the baseline MV results. In a
subsequent analysis, the consensus image score was included
as a continuous variable in a logistic regression model to
determine the ideal cut-off value for different values of percent
correct, sensitivity, and specificity.

Data were analyzed using Stata Statistical Software: Release
14 (StataCorp LLC) and Winsteps Rasch measurement computer
program (winsteps.com). The Johns Hopkins University
Institutional Review Board (IRB) deemed this research
IRB-exempt as nonhuman subjects research.

Figure 2. The Rasch model formula.

Results

Baseline Majority Vote
A batch of 12,000 (1200 images × 10 repetitions) tasks was
posted on AMT March 13, 2015, 11:00 AM Eastern Time for
a total cost of US $1440 ($1200 for Turker compensation, $240
for Amazon commission). The grading was complete in 68
minutes, with 97% of tasks (11,640/12,000) graded within 35

minutes. Tasks submitted without image grades were
immediately reposted so there were no missing data. The tasks
were submitted by 281 unique Turkers, with each submitting a
mean of 42.7 tasks (median 28, mode 1). Turkers were only
able to grade each image once.

The MV consensus was correct in 75.5% (906/1200) of images.
Sensitivity and specificity were both 75.5%. The AUROC was
0.755 (Figure 3).
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Figure 3. Receiver operating characteristic for the diagnosis of abnormal retinal photograph in the phase 1 baseline analysis.

Weighted Logistic Regression Model
For this phase, the focus shifted to the perspective of the Turkers
rather than on the images themselves. Exploration of Turker
accuracy motivated an attempt to incorporate Turker ability into
a predictive model. There is expected to be a distribution of
Turker accuracy that is not necessarily related to the number of
tasks performed [44]. As such, any method that implicitly
weights a consensus score based on number of tasks performed
as does MV may reduce accuracy. In the phase 1 baseline task,
among the 281 unique Turkers median percentage of images
graded correctly was 64.7% (18 correct out of the median graded
of 28) with an interquartile range of 55.5% to 74.4%.

Prior to performing Rasch analysis, the results of the improved
Volunteer Science interface (1200 color images + 1200 red-free
images; cost US $2558, completed over 10 days) were merged
with the phase 1 baseline classifications to permit as many
grades as possible. In essence, we treated the Turkers as test
takers taking a test involving grading multiple images. Duplicate
grades of the same image by an individual Turker were deleted
(6.7%; 2228/33,319 grades deleted). For stability, we also
excluded 1027 grades by 227 Turkers who had graded fewer
than 10 images within the training set of 600 images (leaving
301/528 Turkers and 14,539/15,566 grades). No images were
excluded. Using Rasch analysis, we found Turker ability ranging
from the most highly skilled at –3.75 logits to the least skilled
at 1.9 logits. The median ability is set in the model as zero, and
the interquartile range of ability was –0.40 to 0.47 (Figure 4).

After transformation, the Turker measure scores from log-odds
to odds of correctly classifying an average difficulty image,

weights outside the top and bottom centiles (1%) were truncated
to the level of the 1st and 99th centile to increase stability and
minimize the effect of outliers.

When the Turker weights were applied to the classifications in
the color images in the test set using an arbitrarily determined
cut-off (0), the percent correctly classified improved to 80.7%
with an AUROC of 0.817 (from 74.0% correct and AUROC
0.739 for the test set images only in the phase 1 baseline task).

To determine if the arbitrary cut-off could be improved, a
logistic regression model using the consensus image score
determined by the weighted Turker classifications was
generated. Using this model, a much more granular receiver
operating characteristic (ROC) could be generated. A similar
ROC was generated from a separate regression model using the
unweighted consensus classifications from the same batch
(Figure 5). The AUROCs were 0.908 (95% CI 0.883-0.933)
and 0.889 (95% CI 0.862-916), respectively (chi-square P
value<.001). A post hoc sensitivity analysis exploring the
decision to dichotomize the Messidor dataset between grades
1 and 2 was performed by excluding all Messidor grade 1
images. In this analysis, the AUROCs were 0.919 (95% CI
0.896-0.943) for the Rasch-weighted scores and 0.888 (95% CI
0.861-0.915) for the unweighted scores (chi-square P
value<.001). An additional sensitivity analysis was performed
by using the entire 1200 images to generate Rasch Turker
measures, and then the AUROC was calculated by using a
Jackknife cross-validation excluding 1 image each time for 1199
repetitions [45]. Using this method, the AUROC was 0.909
(95% CI 0.892-0.926).
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Figure 4. Image-Turker map illustrating distribution of measure scores for image grading difficulty and Turker ability (#=2 images/Turkers, .=1
image/Turker, M=mean score, S=1 standard deviation, T=2 standard deviations).

Examination of multiple dichotomization cut-points revealed
that choosing a cut-off that would permit a minimum sensitivity
of 90.3% allows for specificity of 68.5% and percent correctly
classified at 77.5% with an AUROC of 0.79 (95% CI 0.76-0.83)
(Table 1,Figure 6).

Rasch analysis also allowed for a qualitative analysis of the
retinal images. The images were sorted by image measure on
the logit scale as generated by the Rasch analysis described
earlier. The 20 images with the lowest measures ranged from
–4.75 to –2.56 logits, which corresponds to the log odds that a
Turker of average ability (ie, Turker measure = 0) would grade
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these images correctly. Among these 20 images, 0, 1, or 2
Turkers (out of maximum of 30) graded each correctly, and thus
these images were designated the most difficult to grade. The
20 images with the highest measures were selected as the easiest
to grade. A total of 20 sequential images were then selected at
the 3 image measure quartiles as successively less difficult
images to grade (Table 2,Figure 7). The hardest images were
largely Messidor grade 0 and 1 images with some abnormal
features but without significant DR (eg, chorioretinal atrophy,
choroidal nevus) that had been graded as abnormal by Turkers.
Intermediate images were mostly Messidor grade 2 images with

extrafoveal microaneurysms of subtle hard exudates as well as
Messidor grade 0 images without any nondiabetic pathology or
distracting features. The easiest images were generally Messidor
grade 3 with prominent hard exudates apparent.

Because data on the time spent completing the task and prior
exposure to similar tasks is collected in addition to the grade
for the current image task when a crowdsourcing worker
completes a task, a separate logistic regression model that
incorporated variables for time spent on each task and prior
experience with ophthalmic HITs was run but did not improve
diagnostic accuracy (data not shown).

Table 1. Characteristics of different cut-point values using the weighted logistic model, as compared with the majority vote weighted cut-point and
the phase 1 baseline task.

AUROCa

95% CI

Specificity

%

Sensitivity

%

Correct

%

 

0.75 (0.73-0.78)75.575.575.5Phase 1 MVb baseline

0.82 (0.79-0.85)76.187.180.7MV weighted arbitrary cut-
point

0.91 (0.88-0.93)Weighted regression

0.84 (0.81-0.87)87.881.185.0Maximizing % correct

0.79 (0.76-0.83)68.590.377.5Sensitivity ≈ 90%

0.83 (0.80-0.86)90.176.684.5Specificity ≈ 90%

aAUROC: area under the receiver operating characteristic.
bMV: majority vote.

Table 2.

Messidor grade

mode

Images graded correctly

%

Measure score range

logits

Difficulty

10-8.3–4.74 to –2.56Hardest

043.4-53.9–0.14 to –.04Intermediate 1

069.2-76.91.01-1.1Intermediate 2

085.2-88.9  2.04-2.09Intermediate 3

31004.5-4.91Easiest
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Figure 5. Receiver operating curve generated from a logistic regression model using weighted consensus scores of the random 50% (600 images) test
set and a second using the nonweighted scores from the same data.

Figure 6. Receiver operating curve from logistic regression model using weighted consensus scores using a dichotomization cut-point designed to
permit sensitivity of 90% shown alongside unweighted and Rasch-weighted majority vote cut-points.
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Figure 7. Representative retinal fundus images organized by progressive ease of grading correctly (A-E). (A) The image reveals areas of chorioretinal
atrophy (arrow) but is without lesions of diabetic retinopathy. (B) This image reveals very subtle microaneurysms (arrows). (C) This image reveals
more obvious microaneurysms (arrowheads) and subtle hard exudates (arrow). (D) This image reveals more apparent hard exudates (arrow). (E) This
image reveals obvious hard exudates (arrow) and more obvious hemorrhagic microaneurysms (arrowhead).

Discussion

We have shown that workers on a popular crowdsourcing
platform AMT are able to rapidly and accurately identify mild
to moderate DR in a large public dataset and that weighting
Turker responses by their demonstrated ability improves the
accuracy of their crowdsourced grades.

There are many ways of defining a crowdsourcing consensus,
or “divining the wisdom of the crowd.” For binary tasks or
categories that can be rationally dichotomized (as was done in
this study by reducing 4 levels of disease to disease or no
disease), one could take a simple MV approach such that the
image receives the categorization rendered by half or more of
respondents. To reach a consensus with categorical data, using
the modal response may reduce the influence of outlier or
inattentive/malicious users. Both methods involve a post hoc
analysis of the data. Alternatively, one could allow consensus
to be determined on the fly, such that if enough workers render
the same or similar judgment of an image, the image is
immediately coded with this classification so that the full 10
responses need not be completed.

In this study, we sought to determine whether knowledge of an
individual Turker’s ability on a training set of images could be
used to improve accuracy of the consensus grade in a separate
test set of images. We chose to use the Rasch model with image
difficulty as the latent trait. In this way, we were able to
determine the odds of each image being correctly classified by
a Turker of average ability and the odds of each Turker being

able to correctly grade an image of average difficulty. Using
the entire 600 image training set, we saw reasonable targeting
of Turker ability and image difficulty. This allowed us to weight
a Turker’s response to the images in the test set for use in a
logistic regression model. This also allowed for a qualitative
assessment of the retinal images from a unique perspective,
ranked from difficulty to grade correctly rather than ranked by
disease severity.

While we were not able to meet all assumptions of the Rasch
model for this study, we noted that the use of weighting Turkers’
responses showed a small but significant improvement in the
AUROC as compared with unweighted aggregation. This result
was very encouraging and suggests several possible
improvements that can be made to our crowdsourcing method.
For example, if a returning Turker has previously had their
ability calculated, this can be immediately applied to their new
categorizations. If a new Turker begins a retinal grading task,
they can be asked to perform a brief quiz to determine their
ability prior to officially grading images. This method may
allow for a reduction in the number of annotations per image
required to generate a stable estimate for each image. Moreover,
we believe the use of regression methods to be of benefit as
they allow diagnostic cut-points to be set based on the specific
needs of the clinical or research paradigm (ie, to select the
balance between sensitivity and specificity). We have also
demonstrated the utility of a brief training prior to completing
annotation of glaucomatous optic nerve images [25]. The relative
(or combined) utility of these 2 approaches remains to be tested.
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Additionally, in a recent study exploring the use of deep learning
artificial intelligence for retinal image interpretation published
by researchers at Google [28], a stated limitation was their use
of MV consensus grading of several ophthalmologists in both
their 128,000+ image training set and 11,700+ image test sets.
The authors acknowledged that much of the residual imprecision
of the algorithm likely resides in feeding better gold standard
data into the algorithm, creating an opening for similar methods
as described here.

There are several limitations to crowdsourcing retinal image
processing. Because users are anonymous and cannot be directly
selected by the researcher, there is no way to ensure high quality,
conscientious workers each time work is posted. Since we did
not collect demographic information from our Turkers, there
was no way to use Turker factors to predict worker accuracy.
Indeed, the pool of workers can vary substantially over time
and different trends in how workers engage with the site have
become apparent to us over the course of the 3 years of this
experiment. For example, we have recently noticed that many
workers use automated scripts to accept or reserve large numbers
of tasks at once, and then they can proceed at their own pace
without concern for there being few tasks left for them. This
hoarding has made metrics of time spent per image rather
meaningless, but it is not clear that it has led to worse outcomes
overall (data not shown). Regardless, researchers who wish to
use crowdsourcing need to be aware of the culture of the
crowdsourcing marketplace they choose.

Our current method used the supplied Messidor grade as the
gold standard. While this is a high-quality, well-known dataset,
there were dramatic differences in how the images were graded
compared to standard clinical and telemedicine grading schemes
such as the one we used for training. Particularly, while we tried
to mitigate clinically insignificant disease by defining the very
mild disease category (Messidor 1) as normal, there was still
the possibility of clinically very mild disease in the most severe
Messidor category (eg, 16 microaneurysms is Messidor 3 but

could be considered minimal retinopathy on most clinical
grading scales). Since our sensitivity analysis suggested slightly
better diagnostic accuracy when completely excluding all
Messidor level 1 images, we believe our dichotomization was
appropriately conservative.

There are several potential benefits to the use of crowdsourcing
for the interpretation of visual data in ophthalmology. First, an
inexpensive, rapid, and accurate system to reduce the number
of images needing human grading in large public health
screenings is needed. Importantly, this model should also be
scalable; although the cost of grading per image here was greater
than we have previously reported due to increased Amazon fees,
the Turker compensation may have some elasticity which could
be formally tested in the future. Despite these increased costs,
crowdsourcing may be less expensive than other models of
automated retinal image analysis and may be combined with
other models to save costs and increase scalability. An approach
which accurately identifies normal (or very mildly abnormal,
allowing for some false negatives) fundi would be of great value
and could reduce the skilled grader burden by up to 26% to 38%
or more according to some investigators using artificial
intelligence programs [19]. A first pass to remove normal images
is currently being done with an artificial intelligence solution
in Scotland’s national screening program [46]. A similar first
pass or low-level annotation scheme was also validated using
crowdsourcing to improve the accuracy and efficiency of expert
grading of pathology slides for breast cancer [22]. If
appropriately validated, crowdsourcing retinal images could
provide a similar service at lower cost and with less
infrastructure in all settings but could be particularly attractive
in resource-poor settings. Likewise, a means to rapidly
interrogate existing datasets could allow for nimble hypothesis
generation for secondary data analyses. Overall, our results
suggest that generating weighted classifications with Rasch
analysis, which are then used in a weighted logistic regression
model, may improve the accuracy of information obtained by
crowdsourcing to grade retinal images for diabetic retinopathy.
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