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Abstract

Background: Sleep is a critical aspect of people’s well-being and as such assessing sleep is an important indicator of a person’s
health. Traditional methods of sleep assessment are either time- and resource-intensive or suffer from self-reporting biases.
Recently, researchers have started to use mobile phones to passively assess sleep in individuals’ daily lives. However, this work
remains in its early stages, having only examined relatively small and homogeneous populations in carefully controlled contexts.
Thus, it remains an open question as to how well mobile device-based sleep monitoring generalizes to larger populations in typical
use cases.

Objective: The aim of this study was to assess the ability of machine learning algorithms to detect the sleep start and end times
for the main sleep period in a 24-h cycle using mobile devices in a diverse sample.

Methods: We collected mobile phone sensor data as well as daily self-reported sleep start and end times from 208 individuals
(171 females; 37 males), diverse in age (18−66 years; mean 39.3), education, and employment status, across the United States
over 6 weeks. Sensor data consisted of geographic location, motion, light, sound, and in-phone activities. No specific instructions
were given to the participants regarding phone placement. We used random forest classifiers to develop both personalized and
global predictors of sleep state from the phone sensor data.

Results: Using all available sensor features, the average accuracy of classifying whether a 10-min segment was reported as
sleep was 88.8%. This is somewhat better than using the time of day alone, which gives an average accuracy of 86.9%. The
accuracy of the model considerably varied across the participants, ranging from 65.1% to 97.3%. We found that low accuracy in
some participants was due to two main factors: missing sensor data and misreports. After correcting for these, the average accuracy
increased to 91.8%, corresponding to an average median absolute deviation (MAD) of 38 min for sleep start time detection and
36 min for sleep end time. These numbers are close to the range reported by previous research in more controlled situations.

Conclusions: We find that mobile phones provide adequate sleep monitoring in typical use cases, and that our methods generalize
well to a broader population than has previously been studied. However, we also observe several types of data artifacts when
collecting data in uncontrolled settings. Some of these can be resolved through corrections, but others likely impose a ceiling on
the accuracy of sleep prediction for certain subjects. Future research will need to focus more on the understanding of people’s
behavior in their natural settings in order to develop sleep monitoring tools that work reliably in all cases for all people.
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Introduction

Background
Sleep is intrinsically linked to many aspects of life, including
both physical and mental health [1]. The connection between
sleep and well-being is bidirectional, where sleep disorders can
cause significant burden on a person’s life, and underlying
disease can manifest itself as disruptions a person’s sleep. These
links manifest themselves in a number of facets of a person’s
health, from immune and metabolic effects [2] to disordered
sleep patterns as a part of disease processes such as
schizophrenia, depression, or post-traumatic stress disorder
[3,4]. As such, sleep can provide a unique window into
monitoring, tracking, or treating disease processes, and be both
a target and outcome of intervention [5]. Thus, monitoring sleep
is important.

Indeed, sleep monitoring plays a critical role in current clinical
practice. Polysomnography, the “gold standard” for diagnosis
of sleep disorders, monitors a variety of signals over the course
of several nights, for example, electroencephalogram (EEG),
breathing, and muscle and eye movements, to produce a detailed
picture of a patient’s sleep patterns [6]. Ambulatory
polysomnography is a lower cost option than in-clinic
assessment and acquiring data from a person’s home
environment might better represent their typical sleep patterns
[7]. However, it is still expensive, time-consuming, and the
tools used for assessment might themselves interact with the
sleep behavior. Thus, for chronic sleep tracking, clinicians have
typically relied on instruments such as sleep diaries,
questionnaires, and similar instruments [8]. These approaches
have several drawbacks, such as patient adherence and reporting
bias [9]. Having a way to monitor sleep that does not suffer
from these drawbacks but is easier to perform than
polysomnography would be a boon for clinical practice and
research.

With the advent of mobile phones, a majority of Americans
now carry a multifunctional sensor platform in their pocket [10].
These devices and other wearable activity sensors can be used
to monitor a person’s behavior and environment, and as a result,
can be used to monitor sleep. Previous work has used this
mobile-sensor-based approach to predict sleep with relatively
high accuracy. One study predicted the sleep or awake state of
every 10-min long bin of phone sensor data with 93% accuracy
[11]. Another study estimated the sleep duration with an error
of 42 min [12], and a subsequent study on a college student
population was able to predict bedtimes with an accuracy of 25
min of the ground truth [13]. Finally, a more recent study was
able to predict sleep or awake states with 89% accuracy solely
based on the users’ interactions with their phones [14]. These
approaches hold promise for sleep tracking in the future;
however, there remains significant work to do before they can
be used more generally.

Several issues impair the ability to apply these findings to the
general population. First, much of this work has used small
subsets of the population, mostly students [12]. Students tend
to be homogeneous in terms of demographics such as age and
other patterns such as school schedules, and some evidence
suggests that these demographic and life similarities might
impact their sleep patterns [9,15]. Second, study participants
typically receive instructions, such as placing the mobile phone
face-down on the bed with them as they went to sleep [12] or
keeping the phone turned on and to keep it in their bedroom
while sleeping [11]. Although this increases the reliability of
automated sleep assessment, to the degree that people to change
their daily habits, it means that attempts to use these assessments
in the wild will likely fail. Finally, many studies simply exclude
noncompliant participants in the analysis. However,
noncompliance may be related to other factors, such as
untraditional sleep schedules, that might bias results in ways
that reduce generalizability [13]. Therefore, classifiers
(algorithms that distinguish sleep from waking states) that do
not depend on specific instructions regarding the use or
placement of the phone and which are generalizable to a broader
population still need to be tested.

Aim of This Study
In this study, we aim to explore the use of mobile devices for
sleep tracking in a broad population of participants. Participants
are recruited from across the United States without restrictions
on age, leading to a substantially more heterogeneous sample
than previous work. Participants use their own personal devices
and are given no instructions on device use, allowing us to
gather data from the natural, daily course of their lives. We will
use techniques from machine learning to detect the sleep times
of each participant, and will examine whether these techniques
will generalize to other participants. Overall, we will assess if,
and to what extent, we can scale passive sleep monitoring, from
normal everyday phone use, to the more general population.

Methods

Participant Recruitment
We recruited the participants for our study between October
28, 2015 and February 12, 2016. The recruitment was done in
collaboration with Focus Pointe Global (FPG), a company that
specializes in market and scientific research strategies and
participant recruitment and retention. FPG used Internet and
qualitative panels of participants as a primary means of
recruitment. They sent out emails to these panels with links to
the screener questionnaire. Additionally, they used phone calls
to potential participants in their in-house registries.

In the screener questionnaire, interested individuals were
screened for eligibility. Individuals were eligible for our study
if they were at least 18 years old, able to read and understand
English, owned a mobile phone with Android 4.4 through 5.1
(excluding 5.0 due to problems that limited reliable access to
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some sensor data), and had access to WiFi for at least one 3-h
period a day. We excluded individuals who were diagnosed
with any psychotic disorders, were identified as not being able
to walk more than half a mile (4 city blocks), or had positive
screens for alcohol abuse (alcohol use disorder identification
test, AUDIT [16] score ≥16), drug abuse (drug abuse screening
test, DAST-10 [17] score ≥6), suicidal ideation (patient health
questionnaire-9 item, PHQ-9 [18] item 9 rating ≥1; Beck
depression inventory, BDI-II [19] item 9 rating ≥2), or bipolar
disorder (mood disorder questionnaire, MDQ [20] question 1
score ≥7, an endorsement of question 2, and a response of 2 or
3 for question 3). We also excluded those individuals who shared
their phone with others. Eligible participants were consented
using procedures approved by the Northwestern University
Institutional Review Board, which included descriptions of the
data to be gathered along with data security and privacy policies.
We selected roughly equal numbers of participants in four
groups, such that there were wide ranges of depression and
anxiety symptoms in the sample. We defined the groups as
depressed and anxious (PHQ-9 ≥10; generalized anxiety

disorder-7 item, GAD-7 ≥10), depressed only (PHQ-9 ≥10;
GAD-7 <10), anxious only (PHQ-9 <10; GAD-7 ≥10), and
healthy (PHQ-9 <10; GAD-7 <10).

Each participant was enrolled for a period of 6 weeks. First, a
study ID was assigned to the participant by FPG. Then
participants were asked to complete a Web-based questionnaire
consisting of demographics (eg, age, gender, race and ethnicity,
state of residence) and life aspects (eg, living situation,
employment issues, where they keep their phone) that could
potentially affect their sleep and phone use. Participants were
compensated from US $25 to US $270.40 depending on how
long they stayed in the study, and how much of the daily
questionnaires they answered.

Data Collection
We collected two categories of data: mobile phone sensor data
and ecological momentary assessment (EMA) data, which
consisted of daily questions sent to participants asking them
about their last night sleep times. The sensors used in our study
and their attributes are listed in Table 1.

Table 1. List of the mobile phone sensors and their attributes, used in our study.

DescriptionSensor

Physical activity class provided by the Android Activity Recognition APIa (still, walking, running, tilting, on bike, in ve-
hicle, unknown) and the confidence of the classifier (0-100%)

Activity

Light intensity (lux)Light

Average sound intensity (dB) and dominant sound frequency (Hz)Sound

State of the phone screen (on or off)Screen

State of the battery (not charging, charging via power cable, charging via USBb)Battery

Geographic latitude and longitude in degreesGPSc location

The MACd address of the access point which the device is currently connected toWiFi

Contact names, contact numbers, outgoing or incoming calls, outgoing or incoming SMSeCommunication events

Time of the dayTime of day

aAPI: application program interface.
bUSB: Universal Serial Bus.
cGPS: Global Positioning System.
dMAC: media access control.
eSMS: short message service.

EMA data was collected on a daily basis. On each day, at 9am
local time, the questionnaire was launched on each participant’s
phone, asking them about the time they went to sleep last night,
or sleep start time, and the time they woke up, or sleep end time.
Participant could respond immediately to the questions, or delay
the response until later that day. If they did not answer the
questions before 12am that night, the questionnaire disappeared;
and on the next day, a new questionnaire was launched asking
about sleep start and end times of the night before. Sleep
duration was defined as the time from sleep start time to sleep
end time.

We used Purple Robot [21] to collect both sensor and EMA
data. Purple Robot is a multipurpose, open-source Android app
that is developed for our phone-based behavioral sensing studies

[22], and adapted to this study. The app gathers data from the
sensors available on the phone, initially stores them locally on
the device, and then transmits them as network connectivity
becomes available. This allows data collection in a variety of
wireless connectivity scenarios with the confidence that
intermittent network access does not affect the nature, quality,
or quantity of the collected data.

Purple Robot anonymized sensitive information before storage
and transmission. Specifically, it used a standard MD5 hashing
algorithm [23] to anonymize the contact names and numbers
in the communication events sensor (see Table 1), as well as
the participant IDs. Once the data was anonymized, it was
locally stored on the device, transmitted to secure data collection
server via encrypted, password-protected tunnels, and then
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deleted from the device. The mobile phone data residing on the
server could be linked with other information gathered during
the study only if the unique identifiers used by the participants
and the study-specific keys used to encrypt the data were known.
Furthermore, these were only accessible to individuals with the
proper credentials. Overall, these security measures helped to
protect the participants’ privacy, particularly regarding sensor
data such as GPS and MAC addresses, which could risk leakage
of personal information.

Initial tests showed that the sound sensor (microphone) was
draining battery power to a considerable degree, which could
interfere with our data collection and dissatisfy the participants.
Thus, we sample the microphone every 5 min for 30 s at a time.
The Purple Robot sound sensor then reported the average sound
amplitude (dB) and the dominant sound frequency during that
30 s period. The dominant frequency was calculated by taking
the Fast Fourier Transform (FFT) of the signal, and finding the
frequency at which it was maximum. Using this procedure, we
considerably decreased the battery power consumption by Purple
Robot.

Feature Extraction
Before using the collected phone sensor data for developing
sleep detection algorithms, we extracted their attributes, or

features. To extract features, we first divided all sensor data
into 10-min-long windows. Then, from each window, we
extracted 22 distinct features as listed in Table 2. The choice of
10 min was made for consistency with previous research [11].
In our feature set (Table 2), we included features that had
previously been shown to be useful [11-13]. For the location
features, location variance, and location change, we converted
the GPS coordinates in latitude and longitude degrees to 2D
coordinates in kilometers, using the method described in [24],
before extracting the features. In addition, we also included time
of the day as a feature, since we hypothesized that the time alone
is a strong predictor of whether a person is asleep or awake.

To deal with missing sensor data, we used different strategies
for different sensors. For the communication events and the
screen sensors, we used a 0 value when data was not present,
as for these cases absence of data meant no events. For the
activity sensor, since the Android’s Activity Recognition API
(application program interface) does not generate new samples
when the phone has been in the same state for a long time, we
filled the missing points with the activity sample from the last
window which contained data. For the rest of sensors, if the
window was empty, the corresponding features were set to “Not
a Number” (NaN).
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Table 2. List of features used in the study.

DescriptionFeature

Percentage of still activityStillness

Mean of light intensityLight power

Range of light intensityLight range

Kurtosis of light intensityLight kurtosis

< (L (t) – L (t-1))2 / L (t-1)2 >

L(t): light intensity at time t, and <.> denotes the average over time.

Light change

Mean of audio powerAudio power

Min. dominant audio frequencyAudio freq min

Max. dominant audio frequencyAudio freq max

Number of screen ON or OFF events excluding the ones that last less than 30 sScreen activity

√(σ2
lat + σ2

lng)

where lat and lng are latitude and longitude values in kilometers, respectively.

Location variance

Average of change (as defined for light change) between latitude and longitudeLocation change

1 if mode of battery state is charging; 0 otherwiseBattery charging

1 if the phone is connected to USB, 0 otherwiseBattery USBa

Average battery level (0-100)Battery level

Mode of WiFi MACb address (converted to integer by summing up the characters)WiFi

Last contact name (encrypted) contacted by either call or SMScLast name

Last phone number (encrypted) contacted by either call or SMSLast number

Number of phone callsCall

Number of SMSSMS

Number of outgoing phone callsOutgoing call

Number of outgoing SMSOutgoing SMS

Time of the day in hours (0-24), defined as the midpoint in the windowTime of day

aUSB: Universal Serial Bus.
bMAC: media access control.
cSMS: short message service.

Sleep Detection

Overview
We trained algorithms to detect the sleep start and wake-up
times of each participant from the sensor features extracted from
their phones. These algorithms, also called classifiers,
determined whether each feature sample, extracted from 10 min
of sensor data, was from a sleep or an awake state as reported
by participants. After training, the classifiers were able to predict
the state of a given feature sample.

The sleep detection procedure had two stages: first, we used
random forests to estimate the probability for a feature sample
to be from sleep or awake states. Then, a hidden Markov model
(HMM) used the sequence of these probabilities to determine
whether the participant’s state was actually sleep or awake. In
the following, we will give a more detailed description of these
two stages.

Estimating State Probabilities
To estimate the probability for each feature sample being from
an awake or asleep state, we used ensembles of decision trees
known as random forests [25]. Each tree in a random forest
makes a prediction, or vote, about the class of the feature
sample. The random forest calculates the class probability by
averaging over the predictions of individual trees. In this study,
we used 50 trees.

We trained the random forest to estimate the state (awake or
sleep) probabilities based on the last 5 feature sets extracted
from the last 5 windows. For training, we used the bagging
method [26], which randomly samples the dataset with
replacement to create a training set for each tree. In this way,
each tree only observes part of the dataset. In addition, each
decision node in the tree randomly samples 5 out of 22 features,
and finds the best feature and the best split value based on a
Fisher information gain criterion. Therefore, each tree only
observes part of both the data samples and the features. This
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makes random forests less prone to overfitting and a better
candidate for generalization to unseen data [27].

Determining States
Although our random forest classifiers use the last 5 feature
samples to provide the class probability of the current sample,
they ignore the class probabilities of the surrounding samples.
This disregards the fact that sleep and awake states change
slowly over time. In fact, transitions from awake to sleep and
vice versa usually happen once in a given 24-h period.
Therefore, it is important to consider the class probabilities of
the neighbor samples in calculating the class probability of any
given sample.

To determine the sleep or awake states, we first use a median
filter in order to reduce the effect of fast changes in the class
probabilities. A median filter replaces each sample by the
median of w neighboring samples. Here, we set w=21,
corresponding to 210 min in the data. After recalculating the
probabilities, we use the threshold of 0.5 to determine the class
of each sample (Probability≤.5: awake; Probability>.5: sleep).
In this way, the median filter captures the slower dynamics of
the state probabilities.

After recalculating the state probabilities, the next step is to
determine the states. For this, we use a HMM, which is a
Bayesian statistical model that infers the states of an unobserved
variable, sleep state in our study, given a set of observations,
here the set of states estimated by the median filter. The HMM
uses a set of parameters called transition probabilities, which
represent the probability of transition between the classes.
Because there are typically only one sleep-to-awake and one
awake-to-sleep transition in each 24-h period, and given that
we have 144 feature samples in each 24-h period, we set the
transition probabilities as the following:

T(sleep-awake)= T(awake-sleep)=1/144

T(sleep-sleep)= T(awake-awake)=143/144

Training and Cross-Validation
We train sleep detection models in two different ways: (1) global
models and (2) personal models. The former is trained on all
data from a number of participants and cross-validated on the
rest, whereas the latter is trained and cross-validated on the data
from the same participant at different times.

For the global models, we use a subject-wise, 10-fold
cross-validation method. We first divide the participants into
10 almost equal, nonoverlapping sets. Then, we train models
on all sets except one and cross-validate it on the remaining set.
We repeat this procedure 10 times so that all participants are
used for cross-validation.

To train personal models, we divide each participant’s data into
3 nonoverlapping folds. Then, we train models on 2 folds and
validate them on the remaining fold. We repeat this procedure
3 times until all folds have been used for validation. The
classification accuracy was averaged across the folds,
representing the classification accuracy for the subject.

Results

Participants
In total, 208 eligible participants were recruited for the study.
One participant did not install the software on their phone, and
therefore was removed from the analysis. Of the 207 participants
included in the analysis, 82.6% (171/207) were females and
17.4% (36/207) were males. Their ages ranged between 18 and
66 years old, with a mean of 39.3 (SD 10.3). They represented
a geographically diverse sampling of the United States, as shown
in Figure 1. Participants did not perfectly represent the racial
and ethnic diversity of the United States with 78.7% (163/207)
Caucasian, 11.6% (24/207) African American, 2.4% (5/207)
Asian, 1.4% (3/207) Native American, and the remaining 4.3%
(9/207) of participants were a combination of two or more races.
It was found that 1.4% (3/207) of participants preferred not to
specify race and 9.2% (19/207) of participants noted Hispanic
as their ethnicity. Nevertheless, this is a diverse pool of
demographics and locations.

The outcomes on the questionnaires asked during the screening
were as follows: the average drug abuse score (DAST-10) was
0.56 (SD 1.06), alcohol abuse score (AUDIT) was 3.66 (SD
3.35), depression score (PHQ-9) was 9.72 (SD 5.10), and anxiety
score (GAD-7) was 9.01 (SD 5.41). As expected, the drug and
abuse scores were low, since we excluded individuals with high
scores. However, there was a wide distribution in depression
and anxiety scores as it was intended in the recruitment
procedure.

Participants had diverse educational backgrounds: 1.9% (4/207)
of participants had some high school education, 12.1% (25/207)
had completed high school, 35.3% (73/207) had some college
training, 13.5% (28/207) had 2-year college training, 23.6%
(49/207) had Bachelor’s degree, 11.1% (23/207) had Master’s
degree, and 2.4% (5/207) had professional Doctorate degree.

Finally, we asked the participants questions about the aspects
of their lives that would potentially influence sleep detection.
Of the 207 participants, 14.5% (30/207) lived alone, whereas
85.0% (176/207) lived with other people, and 0.5% (1/207) did
not specify. In response to the employment status question,
61.4% (127/207) were employed, 20.8% (43/207) were
unemployed, 8.2% (17/207) had disability which prevented
them from working, 1.9% (4/207) were retired, and 7.7%
(16/207) did not specify their employment status. Of the 127
employed participants, 78.0% (99/127) had one job, 18.1%
(23/127) had two, 3.1% (4/127) had three, and 0.8% (1/127)
had four jobs. It was found that 87.4% (181/207) of participants
mentioned that they keep their phones in their bedrooms while
sleeping, whereas 12.6% (26/207) keep it in another room. It
was also found that 58.5% (121/207) of participants said that
they share their bedrooms with someone, whereas 41.5%
(86/207) sleep alone in their bedroom. As should be expected,
a broad range of life situations occurred.

In addition to understanding the lives of our participants, the
purpose of collecting these data was to assist sleep detection
algorithms, by adding them to sensor features as inputs.
However, our initial tests showed that they were not helpful in
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detecting sleep, and therefore we did not use them in later analyses.

Figure 1. Locations of participants on the map, shown as red dots. We added a small random value, drawn from a Gaussian distribution with zero mean
and standard deviation of 1.5 km in geographic distance, to each participant’s location so that their exact coordinates cannot be extracted from the figure.

Data Characteristics
On initial analysis of the data, there were two apparent issues
that needed to be resolved. First, some participants had changed
their devices during the study, with a number of them reporting
on multiple devices at the same time. We detected the change
in a participant’s mobile phone by tracking their device’s MAC
address. Out of the 207 participants, 21 changed their phones
during the study. When a participant used multiple devices at
the same time, we used the data from the first device until there
was no EMA data coming from that device, and then switched
to the second device.

There were also inconsistent values in sensor and EMA data
that needed to be corrected or removed. First, timestamps were
stored in different units for some participants, due to difference
in phone models. We converted the units of these timestamps
to seconds which was used for all other participants. There were

also out-of-range values for sleep times. For example, in some
cases, we had negative sleep start or end times; these artifacts
were observed in 14 of 207 subjects, with between 1 and 5
erroneous reports for each of these subjects. We removed these
instances from the dataset before the analysis. After this
processing, our dataset consisted of 207 subjects and a total of
10,649 reports, allowing for a broad characterization of sleep
detection.

For the EMA data, there was an extremely high rate of
adherence, resulting in little missing data. Of the 207
participants, 10.6% (22) stopped providing labels before the
end of the 6-week period. However, many continued to send
data after the end of 6 weeks, with 13.0% (27/207) providing
more than 60 days of data. The participants’ enrollment in the
study is depicted in Figure 2. It was surprisingly doable to recruit
this large number of subjects over the extended period of time
of our study.
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Figure 2. Participants' enrollment in the study, sorted based on the enrollment time. Each dot represents an ecological momentary assessment (EMA)
report sample we received from the participant. The 4 recruitment waves are evident in the 4 clusters of starting times. Vertical white stripes reflect the
time of day when people were less likely to complete their EMA reports (eg, night time). The number of days ranged from 11 to 137 days, with an
average of 52.9 days for each participant.

Sleep Detection Results
The average prediction accuracy of the model trained only on
sensor features is about 81.8% (95%CI 81.12-82.48), and the
addition of time of the day to the feature set increases this
accuracy to 88.8% (95%CI 88.41-89.19; Figure 3). This
accuracy, however, is only slightly better than that of the model
that has only been trained on time (86.9%; 95%CI 86.68-87.12).
These accuracies vary considerably across the subjects, ranging
from 65.1% to 97.3% (Figure 3). Importantly, these results are

in line with those of well-controlled studies for some subjects
and dramatically worse for others.

We also compared personal models (those trained with the same
participant is predicting) with global models (those trained with
other participants’ data and predicting a single participant).
Figure 4 displays the correlation between the accuracy of
personal and global models. Personal models fared better for
80.2% (166/207) of participants; however, the difference
between personal and global models was relatively small.
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Figure 3. Sleep detection results. (a) Prediction accuracy (error) for global and personal models trained on time feature only, sensor-based features,
and all features (see Table 2). Bars show the mean, and error bars show 95% CI. (b) Distribution of the accuracy of global and personal models trained
on all features across the participants .

Figure 4. The accuracy of global and personal models across the participants. Each dot is one participant. The dots above the gray line (y=x) indicate
participants for which personal model performed better than global model, and the dots below indicate the other way around. The correlation between
the personal and global model accuracies is high (r=.685; P<.001).

Where Do Classifiers Fail?
The large variability of prediction accuracies across the
participants led us to further explore why prediction fails for
specific participants. Here, we looked into various metrics of
data quality and investigated their relationship to the
classification accuracy. The aim was to find out whether there

are specific data quality issues that caused classifiers to fail,
and whether we are able to improve the classification accuracy
by resolving those problems.

We found two major data quality issues: missing data and
misreports. In the following, we investigate each of these issues.
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Missing Data
We estimated the proportion of missing data points in both
sensor and EMA data for all participants, and we evaluated the
relationship between these and classification accuracy. Although
this relationship is complex Figure 5, we found that generally
participants with larger proportions of missing sensor or EMA
data had lower classification accuracies. Therefore, it seems
that missing data is one primary cause for the classifiers’ failure.

If missing data is the major cause, the next question is when
the missing samples in sensor data occurred. We estimated the
proportion of sleep-state samples that were missing, as well as
the awake-state samples, and calculated their ratio. As Figure
6 shows, this ratio is significantly higher than 1 for each
individual sensor as well as all sensors together. For all sensors,
the proportion of missing samples during sleep is almost twice
compared with awake.

Figure 5. Dependence of classification accuracy on missing data. (a-b) Accuracy versus the proportion of missing sensor data for global (a) and personal
(b) models. Here, we excluded the activity, communication events, and screen state sensors as their absence did not indicate missing data. (c-d) Accuracy
versus the proportion of missing ecological momentary assessment (EMA) data for global (c) and personal (d) models. In all four cases, there is a weak
but significant, inverse relationship between the classification accuracy and the proportion of missing data. ρ is Spearman rank correlation coefficients,
with negative values indicating inverse relationships. One star indicates significance at P<.05, two at P<.01, and three at P<.001.
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Figure 6. Proportion of missing sensor data during sleep states divided by the proportion of missing sensor data during awake states, across all
participants.

Misreports
To investigate the possibility of misreports, we looked at the
distribution of sleep start and end times. Although the
distribution of sleep end times looks almost normal, sleep start
times seem to have an anomaly between 12pm and 3pm (Figure
7). One possible scenario was that participants mislabeled “am”
and “pm” times, especially at midnight (12am). Alternatively,
these could be short mid-day naps reported instead of previous
night’s sleep. To investigate which scenario was more likely,

we also plotted sleep start times versus sleep duration (Figure
7). As evident in this plot, there is a distinct cluster of sleep start
times between 12pm and 3pm which is associated with
abnormally long (>15 h) sleep duration. Therefore, these data
points could not represent mid-day naps, but they are more
likely to have been caused by a confusion between “am” and
“pm” in reporting sleep start times.

A summary of the data quality issues and their likely causes is
shown in Table 3.

Table 3. Summary of the causes for low data quality which likely made the classifiers fail.

Possible causesIssueData source

Mobile phone off, low battery levelMissing samplesSensors

Purple Robot, operating system, or hardware failureMissing samplesSensors

Device model and operating system differencesOut of range valuesSensors

Participants not reportingMissing samplesEMAa reports

Participants misreportAbnormal valuesEMA reports

aEMA: ecological momentary assessment.

In addition to missing data and misreports, we also investigated
whether the classification accuracy was different between
participants with symptoms of depression or anxiety and the
ones with no symptoms. We compared four groups of
participants: nondepressed and nonanxious, depressed and

nonanxious, nondepressed and anxious, and depressed and
anxious. We did not find any significant difference in
classification accuracy, for both global and personal models,
between any of these groups.
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Figure 7. (a) The distribution of sleep start and end times. For sleep start times, there is an anomaly between 12pm and 3pm, which are likely due to
the participants confusing “am” and “pm” times. (b) Sleep start times versus sleep duration, shows a distinct cluster (middle top) associated with sleep
start times between 12pm and 3pm and abnormally long sleep durations (>15 h).

Improving the Quality of Data
After investigating a number of data quality issues that were
likely causing the classifiers to fail in certain situations, we
attempted to fix these issues and observed the effects on
classification performance. Specifically, we took two steps:

1. When the reported sleep start times were between 12pm
and 3pm and their associated sleep duration was longer
than 15 h, we changed “pm” to “am.”

2. We removed participants for whom, on average, more than
50% of sensor samples were missing. This consisted of
20.8% (43/207) of participants.

To estimate the proportion of missing sensor data, we excluded
the communication events and the screen state sensors, as their
absence did not necessarily imply missing samples. After each
of these steps, we trained and cross-validation both global and
personal sleep prediction models.

The results of the classifier’s performance after improving the
data quality is shown in Figure 8. As the figure shows, correcting
reported times considerably increased the accuracies of both
global and personal classifiers, to 86.7% and 91.5%. Removing
participants with large amounts of missing data further increased
these accuracies, to 87.6% and 91.8%, respectively, albeit to a
slightly smaller degree. It is also interesting to note that the
global time-only and sensor-only models have similar
performances, which is considerably lower than the performance
of the global all-feature model. However, for the personal
models, the accuracy of the time-only model is only slightly
less than the accuracy of the model trained on both sensor
features and time.

Since the amount of missing sensor data was inversely correlated
with the classification accuracy, we speculated that adding an
extra feature encoding the amount of missing sensor data could
be beneficial. However, including these additional features did
not improve the accuracy of the classifiers.
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Figure 8. (a-b) Sleep detection results after quality improvement, for global (a) and personal (b) models. First, we corrected the reported sleep start
and end times, which resulted in significantly higher accuracies (red) for all models. Then, we removed participants for whom the sensor data was
missing for more than 50% of the time. This consisted of 43 participants. The resulting accuracies (blue) significantly improved for the sensor-only
model, but did not change for the rest.

Prediction of Sleep Start and End Times
Using our predictions of sleep state, we can calculate values for
sleep start and end times as well as sleep duration, which can
be useful for monitoring clinical processes [5]. We find the
closest predicted sleep period to each reported sleep period
(from personal models), and examine the bin-indexed errors in
predicting the start and end of that sleep period, as well as the
total duration of the sleep period. These errors are all calculated
on binned data, thus our minimum resolution is the bin size (10
min). We are able to estimate both sleep start and end times
with approximately equal accuracy, with an average median
absolute deviation (MAD) across participants of 43 min and 38
min, respectively (Figure 9). We are also able to predict sleep
duration with similar accuracy, with an average MAD across
participants of 58 min (Figure 9). The distribution of these errors
are all relatively skew-right, which suggests that poor prediction
of a small number of participants substantially affects
performance.

Looking at these errors in terms of sleep characteristics can help
further elucidate where we make errors. We find that participants

with more extreme, that is, longer or shorter, average sleep
durations have larger errors in estimating sleep duration (Figure
10). Specifically, we tend to over-estimate the duration of short
sleep periods, and underestimate the duration of long sleep
periods. That this occurs even with individual models suggests
that, rather than a regression to a global mean, there may be
something intrinsically difficult in estimating the durations of
extreme sleep periods (or the sleep of those that report extreme
sleep periods). We examine the per-participant performance for
“outlier” (duration greater or less than two standard deviations
(SDs) from the participant’s average sleep duration) and
“typical” sleep periods (Figure 10). We find that, for 89% of
participants, we can estimate the duration of typical sleep
periods within an hour. Interestingly, we can do the same for
38.2% of participants even on their outlier sleep periods, and
can estimate outlier sleep periods within 2 h for 62% of
participants, suggesting that, while outlier periods are more
difficult to predict regularly than most, we do not perform poorly
on all outliers as a rule. This suggests difficulties in estimating
the sleep duration for particular participants, which may speak
to the unique challenges in estimating behavior in large,
heterogeneous populations.
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Figure 9. (a) Distribution of median absolute deviation (MAD) for predicted sleep start times from true sleep start times over all participants with less
than 50% missing data. (b) Distribution of MAD of predicted sleep end times from true sleep end times over all participants with less than 50% missing
data. Black line indicates the average MAD over those participants. (c) Distribution of MAD of predicted sleep duration from true sleep duration over
all participants with less than 50% missing data. Black lines in (a)-(c) indicate the average MAD over all participants.

J Med Internet Res 2017 | vol. 19 | iss. 4 | e118 | p. 14http://www.jmir.org/2017/4/e118/
(page number not for citation purposes)

Saeb et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 10. (a) Relationship between average sleep duration and average errors in estimates of sleep duration. Points reflect individual participants with
less than 50% missing data, black line represents least-squares regression. (b) Distribution of average sleep duration estimation error over participants
with less than 50% missing data for “outlier” (blue) and “nonoutlier” (red) sleep durations. Outlier sleep periods are defined as periods that are two
standard deviations shorter or longer than the participant’s average sleep duration, and nonoutlier periods fall within those bounds.

Discussion

Principal Findings
This study was a first step toward bridging initial
proof-of-principle studies showing the feasibility of mobile
phone-based sleep detection technology with implementation

for a general population in their natural daily-life settings. We
divided phone sensor data into 10-min-long windows, and
calculated a number of features from them. Then, we trained
our models, composed of random forests and HMMs, to predict
the state of each window (sleep or awake). Although the global
classifiers trained on all features were able to predict sleep state
with 87.6% accuracy, personal models which were trained
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separately on each participant had a (significantly) higher
accuracy of 91.8%. These numbers were close to the range
reported by previous research in more controlled settings
[11-13]. Thus our study confirms that sleep tracking via mobile
devices is a viable paradigm, and that it can generalize to broad
populations when used in daily-life settings.

It is interesting that the performance of personal models trained
solely on the time of the day was only slightly lower than the
ones trained on all features. This suggests that an individual’s
sleep patterns do not drastically change day-by-day, and that
whether they are asleep or awake at a specific hour can be
predicted with good accuracy by time alone. This is an important
result, as it shows that the baseline performance, defined by the
time-of-day model, is significantly higher than the chance level
of 67-71%, calculated by assuming that the average sleep
duration across the individuals is between 6 h and 7 h. Therefore,
it is necessary that when we report the accuracy of sleep
detection algorithms, we compare them to the accuracy of a
model only trained on time of the day. This comparison makes
the assessment of future sleep detection algorithms easier.

Limitations
There are a number of limitations that should be considered
when interpreting the results of our study. First, the self-reported
sleep times are not necessarily accurate themselves. In fact, we
observed that a number of participants misreported their sleep
start times by a substantial amount; when we fixed these reports,
the accuracy of the sleep detection algorithm increased
substantially. Apart from directly addressable issues like this,
there are many other ways in which self-reports might have
been inaccurate. Self-reported sleep start times are in general
biased, and people tend to over-estimate their sleep duration
[28]. Therefore, what we calculate as accuracy is relative to an
inaccurate measure. It may be difficult, both here and in other
sleep detection work, to calculate the true accuracies of the
algorithms.

Second, the parameters of the HMM were adjusted under the
assumption that going to sleep and waking up occur only once
in 24 h. Although this assumption is true for most people, there
are a number of cases for which it is violated. First, most elderly
suffer from fragmented sleep [29], during which they can stay
awake for a few hours before going to sleep again. Some sleep
pattern disorders, such as insomnia or sleep apnea, cause both
segmentation of sleep at night and sleepiness during the day
[30], likely affecting daytime behavior as well as sleep patterns.
In more extreme cases, such as sleepwalking, patients manifest
night-time behaviors that resemble daytime, routine activities
[31]. Second, we did not ask whether any of our participants
worked in different shifts across days, and some of the anomalies
seen in the reported times could have been due to shift-working.
Finally, a good number of people, almost one-third of
Americans, take day-time naps [32]. Therefore, in many cases,
the assumption that a person goes to sleep only once in a 24-h
period is incorrect, and further understanding of both population
and individual sleep habits will be necessary to create more
accurate models.

Third, we do not know if any, or which of these participants
had a sleep disorder. People with sleep disorders can be

significantly different from the healthy populations in many
aspects of their life, which can influence the relationship
between mobile phone sensor features and sleep patterns. For
example, individuals with disturbed sleep report lower quality
of physical functioning, social functioning, vitality, and general
health [33]. These differences would likely result in differences
in how individuals interact with their mobile phones, thus
affecting the data and algorithms for sleep detection. Thus,
caution must be applied in generalizing these results to those
with atypical sleep patterns.

Finally, our participants were not a perfect sample of the general
population in the United States. First, close to 82.6% of our
participants were female. Second, we only recruited participants
who had WiFi Internet access on their mobile phones. This was
important, as the high frequency sensor data can quickly
accumulate on the phone and reach the storage limits. Using
WiFi to off-load data is energy-efficient and free, unlike using
cellular connectivity, which can drain the battery and incur data
use fees. For this reason, we recruited participants who had
reliable Internet access on their phones. However, with this
restriction, it is likely that participants with lower incomes are
excluded from our study, who might have different sleep
patterns and behavior. Third, 21 participants (10%) changed
their phones during the study. Although this may be due to
chance, it may also be related to the holiday season, during
which people may have received phones as gifts. Finally, we
specifically excluded participants with positive screens for
several severe psychiatric conditions, which may alter sleep
patterns. Thus, it is possible that any or all of these biases reduce
the generalizability of these results.

Comparison With Prior Work
We extended previous research in two important ways. First,
our sample size was large relative to previous studies and the
study participants were more diverse in age, education level,
employment, and location. Although a more diverse sample
potentially provides a better training dataset for machine
learning, it introduces a few problems. First, diversity means
more variability in behavior. Unlike college students who have
been the participants of a number of previous studies [11,13],
participants from the general population do not necessarily use
their mobile phones in ways that can help the sleep detection
algorithms. For example, mobile phone usage is one feature
that is very useful in detecting sleep states since most people
use their phones frequently throughout the day. However, phone
usage patterns are different across different age groups. Whereas
22% of Americans aged between 18 and 29 years use their
phones every few minutes, this number for an older age group
of 50-64 years is only 6% [34]. Therefore, a large and diverse
sample introduces new challenges to sleep detection algorithms.

The second way in which we extended the previous research
was that we did not give participants any instructions regarding
the placement of the mobile phone. This meant that participants,
for example, could turn their phones off during sleep, or leave
it unplugged so that it runs out of battery. As a result, we found
that there were many more missing data points during sleep
than during awake states. This, however, was not the only
scenario that challenged the sleep detection algorithms.
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Participants could also leave their phones unattended during
the day, or put it in another room when sleeping. Despite all
these, the performance of the classifiers is close to, albeit slightly
worse than, what has been reported by previous research in
more controlled settings.

Conclusions
As mobile phone technology advances, we expect many of the
issues we encountered in this study will vanish. For instance,
several of the technical problems we experienced will be
ameliorated by longer battery life, standardized hardware, and
improved app design. Many other limitations, however, will

not be solved by advancing underlying technology. Here we
encountered several obstacles, from behaviors that misled
algorithms, to sleep patterns unaccounted for by typical models,
to inaccurate ground truth data that were due to errors and biases
in self-reports rather than technology. Although these obstacles
are typically not encountered during demonstrations of sleep
detection algorithms, they will likely prove to be impediments
to generalized sleep tracking. We believe that mobile
phone-based sleep detection technology must tackle these
problems in order to become a reliable tool in people’s natural
life settings.
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