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Abstract

Background: The prevalence and value of patient-generated health text are increasing, but processing such text remains
problematic. Although existing biomedical natural language processing (NLP) tools are appealing, most were developed to process
clinician- or researcher-generated text, such as clinical notes or journal articles. In addition to being constructed for different
types of text, other challenges of using existing NLP include constantly changing technologies, source vocabularies, and
characteristics of text. These continuously evolving challenges warrant the need for applying low-cost systematic assessment.
However, the primarily accepted evaluation method in NLP, manual annotation, requires tremendous effort and time.

Objective: The primary objective of this study is to explore an alternative approach—using low-cost, automated methods to
detect failures (eg, incorrect boundaries, missed terms, mismapped concepts) when processing patient-generated text with existing
biomedical NLP tools. We first characterize common failures that NLP tools can make in processing online community text. We
then demonstrate the feasibility of our automated approach in detecting these common failures using one of the most popular
biomedical NLP tools, MetaMap.

Methods: Using 9657 posts from an online cancer community, we explored our automated failure detection approach in two
steps: (1) to characterize the failure types, we first manually reviewed MetaMap’s commonly occurring failures, grouped the
inaccurate mappings into failure types, and then identified causes of the failures through iterative rounds of manual review using
open coding, and (2) to automatically detect these failure types, we then explored combinations of existing NLP techniques and
dictionary-based matching for each failure cause. Finally, we manually evaluated the automatically detected failures.

Results: From our manual review, we characterized three types of failure: (1) boundary failures, (2) missed term failures, and
(3) word ambiguity failures. Within these three failure types, we discovered 12 causes of inaccurate mappings of concepts. We
used automated methods to detect almost half of 383,572 MetaMap’s mappings as problematic. Word sense ambiguity failure
was the most widely occurring, comprising 82.22% of failures. Boundary failure was the second most frequent, amounting to
15.90% of failures, while missed term failures were the least common, making up 1.88% of failures. The automated failure
detection achieved precision, recall, accuracy, and F1 score of 83.00%, 92.57%, 88.17%, and 87.52%, respectively.

Conclusions: We illustrate the challenges of processing patient-generated online health community text and characterize failures
of NLP tools on this patient-generated health text, demonstrating the feasibility of our low-cost approach to automatically detect
those failures. Our approach shows the potential for scalable and effective solutions to automatically assess the constantly evolving
NLP tools and source vocabularies to process patient-generated text.
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Introduction

The Internet pervades our everyday life, including health care
[1]. For instance, patients increasingly use the Internet for health
information and peer support. In 2005, 80% of Internet users
searched for health information online [2]. Just 6 years later, a
quarter of Internet users living with a chronic condition sought
information online from a peer with a similar condition [3].
Similarly, applications that make use of data generated by
patients are increasing [4]. For example, micro-blogging (eg,
Twitter) has been used to improve natural disaster and
emergency response situations [5], and patient-generated data
on the PatientsLikeMe website has been used to evaluate the
effectiveness of a drug [6]. Moreover, patients have voiced great
potential benefits of such patient-generated data with respect
to their treatment decisions, symptom management, clinical
management, and outcomes [7,8]. However, in these instances,
the use of patient-generated data required manual analysis of
textual data. Although these methods provide value, manual
analysis does not scale to the growing size of patient-generated
health data online. Moreover, for many research activities, the
overwhelming amount of data remains a challenge.

One scalable approach to process text-based patient-generated
data is natural language processing (NLP). An increasing
number of researchers studying patient-generated text, such as
in online health communities, have used statistical methods
based on manually annotated datasets [9-15]. Utilizing statistical
methods, researchers extracted cancer patient trajectories from
patients’ posts [9], estimated the level of social support in an
online breast cancer community [10], predicted adverse drug
reactions from health and wellness Yahoo! Groups [11],
identified medically relevant terms [12], classified addiction
phases [13], predicted individual at risks for depression [14],
and discovered patient posts in need of expertise from
moderators [15]. These methods can be highly effective in a
given online community, but they either require tremendous
upfront effort to manually annotate or do not provide semantic
connections. Furthermore, maintenance and generalizability
remain as major challenges for such statistical methods.

Existing biomedical NLP tools have the potential to be used
immediately and promise to provide greater generalizability
than statistical approaches while providing semantic
connections. Researchers have developed various NLP
techniques and applications in the biomedical domain. For
example, the Clinical Text Analysis and Knowledge Extraction
System (cTakes) [16] was developed to map concepts to medical
ontologies from clinical notes. cTakes is specifically trained for
clinical domains and consists of NLP components that can be
executed in sequence. Also, the National Center for Biomedical
Ontology [17,18] annotator identifies a term and maps it to
ontological concepts from multiple knowledge resources to
allow the use of integrated knowledge. Other applications have
been developed primarily for specific uses, such as Medical

Language Extraction and Encoding System (MedLEE) [19],
whose goal pertains to identifying specified conditions in
radiology reports. However, MedLEE was later adapted as a
decision support system for Columbia-Presbyterian Medical
Center [20] and as a phenotypic information extractor
(BioMedLEE) [21] from biomedical literature.

One of the most widely regarded NLP applications in
biomedicine is MetaMap [22], which was developed by the
National Library of Medicine (NLM). MetaMap uses
computational linguistic techniques to identify words or phrases
in text and map them to concepts in the NLM’s Unified Medical
Language System (UMLS). The UMLS is a collaborative effort
to enable semantic interoperability among systems by connecting
more than 1.3 million concepts from more than 100 biomedical
vocabularies [23,24]. Three knowledge sources enable
applications to utilize the UMLS: (1) the Metathesaurus, which
connects synonymous concepts across vocabularies, (2) the
Semantic Network, which is a hierarchical network of semantic
types that are linked to every concept in the Metathesaurus, and
(3) the SPECIALIST Lexicon, which provides the lexical
information needed for NLP tools. Thus, MetaMap provides a
semantic link between the words or phrases in text and a
structured vocabulary that is used by many applications in
biomedicine.

However, MetaMap and many other traditional biomedical NLP
tools were developed to process biomedical literature and
clinical notes, rather than patient-generated text in online
communities. One of the biggest challenges in applying these
biomedical NLP tools to a different type of text is the difference
in vocabulary. For example, Zeng et al recognize differences
in the vocabulary used by patients and clinicians [25]. Smith
and Wicks manually evaluated patient-generated text from
PatientsLikeMe and found that over 50% of patient-submitted
symptoms did not map to the UMLS due to issues like
misspellings and slang [26]. Although Keselman et al [27]
reported fewer cases of unmapped terms from patient-generated
online community posts than Smith and Wicks [26], the
researchers recognize this remaining challenge as a significant
problem.

Recognizing the differences in vocabulary, a number of efforts
to expand the UMLS to include patient-generated text have
been reported [25,27-31]. One of the biggest efforts is the
open-access Collaborative Consumer Health Vocabulary
Initiative (CHV) [25,27,31]. CHV is a collaborative effort to
address differences in terminology by including layman-friendly
terminology that is familiar to patients [25]. Although the
terminology difference could theoretically be addressed by
expanded vocabularies, it is questionable whether CHV can
fully address other issues of patient-generated text, such as
misspellings, community nomenclature, and Internet-oriented
writing styles. To address this issue, Elhadad et al applied an
unsupervised, semantics-based methods to detect community
nomenclature including typical misspellings [32]. Although the
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method is domain-independent, it accounts for only three
semantic types.

The effort to process patient-generated text, such as email
[29,30] and search queries [27,28], using biomedical NLP tools
has also been reported. For example, Brennan and Aronson
processed patient-authored emails using MetaMap and showed
the potential of processing this patient-generated, informal text
to identify UMLS concepts [29]. However, Brennan and
Aronson identified only three types of errors: (1) overly granular
parsing of phrases into separate terms (eg, splitting of the phrase
“feeling nauseous”), (2) inappropriate mappings that are simply
nonsensical or incorrect for the context (eg, a verb “back” being
mapped to “body location or region back”), and (3) mismatches
resulting from terms and semantic types having more than one
meaning (eg, confusion between “spatial concept right” and
“qualitative concept right”) [29]. Zeng et al have mapped the
UMLS concepts to patients’ Internet search queries [28], and
the study highlighted the difference between terminology
structures in UMLS and mental model of patients.

These prior studies show that many have worked to improve
biomedical NLP tools to process patient-generated text. As NLP
technologies and source vocabularies continue to evolve, we
need easy, low-cost methods to systematically assess the
performance of those tools. Traditionally in NLP, evaluations
involve a great deal of manual effort, such as creating a
manually annotated dataset. Moreover, a new evaluation for
different types of text requires additional annotated datasets,
thus maintenance can often be difficult. Recognizing the
potential benefits of performing a low-cost assessment of NLP
tools, we explore automated methods to detect failures without
producing annotated datasets. Given MetaMap’s long history
of use in biomedical contexts, its configurability, and its
scalability, we apply our failure detection tool to MetaMap in
processing patient-generated text from an online cancer
community to demonstrate the feasibility of automatically
detecting occurrence of failures. We first present the dataset
and MetaMap configuration, followed by the specific methods
and results for (1) characterizing failure types, (2) automated
failure detection, and (3) manual performance evaluation of our
automated failure detection approach.

Methods

Online Community Dataset and MetaMap
Configuration
Our dataset consists of community posts from the
CancerConnect website, an online cancer community for cancer
patients, their families, friends, and caregivers to exchange
support and advice. The dataset consists of a total of 2010
unique user members and 9657 user member–generated posts
from March 2010 to January 2013.

We processed the online community posts with MetaMap
version 2011AA and configured the word sense disambiguation
feature and included only the top-ranked concept from the
output. In the default setting, MetaMap suggests a number of
candidate concepts with candidate scores indicating relationships
among concepts found in the text. However, in real-world usage

on large amounts of text, considering multiple suggestions for
each processed term could be overwhelming to assess manually.
Thus, we assessed only the top-ranked scored concept to
simulate how MetaMap would be used in real-world settings.
However, we used default settings for all other options for
generalizability. A single mapped term/concept served as the
unit of analysis.

Methods for Characterizing Failures
To characterize the types of failures, we assessed MetaMap’s
output collaboratively through iterative rounds of manual review
among the five authors. We reviewed the output following an
open coding process [33] to identify emerging themes grounded
in data. Because we did not know all possible failure types, we
chose to use an inductive coding process, rather than a
structured, reductive content analysis approach. In each iteration,
we processed different patient-generated posts, and each author
independently and manually evaluated the same sets of mapped
terms by examining the corresponding UMLS concept
definitions and semantic types. Then as a group, we reached a
consensus through discussion when different verdicts were
made. Based on the list of inaccurate mappings, we grouped
each inaccurate mapping into failure types and went on to
identify potential causes within each failure type through the
open coding process. This second step addressed the gaps in
previous literature by identifying a number of causes of the
failure types and providing information needed to detect these
failures automatically.

Results for Characterizing Failures

Overview
From our manual review, we characterized three types of failure:
(1) boundary failures, (2) missed term failures, and (3) word
ambiguity failures. A boundary failure occurred when a single
coherent term was incorrectly parsed into multiple incomplete
terms. A missed term failure occurred when a relevant term had
not been identified. A word sense ambiguity failure occurred
when a relevant term was mapped to a wrong concept. Within
these three failure types, we discovered 12 causes of failures.
In the sections below, we describe each type of failure and then
identify potential causes within each failure type.

Boundary Failures
Boundary failures, in which a single coherent term is incorrectly
parsed into multiple terms, are well documented in biomedical
NLP literature [26,29,34-36]. In this literature, boundary failures
are referred to as overly granular parsing [29] or split phrasing
[34]. Our analysis expands our understanding with boundary
failures associated with patient-generated text.

Our patient-generated text contained extensive descriptive
phrases (eg, “feeling great”) and colloquial language (eg,
“chemo brain”), contrasting with typical biomedical text that
usually contained concepts from standard terminologies.
Theoretically, boundary failures can result from standard
medical terminologies. However, descriptive phrases and
colloquial language highlight the parsing problem of biomedical
NLP because colloquial language and descriptive phrases that
patients use in online health communities cannot all be included
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in the UMLS. For instance, UMLS included “feeling sick” as
a synonym of a concept, although a similar descriptive phrase
“feeling great” was not included in the UMLS. Consequently
in our analysis, “feeling sick” was recognized as one concept,
while “feeling great” was parsed into two separate terms
“Emotions” and “Large” delivering different interpretations
than intended.

Boundary failures also occurred even when proper concepts
were available in the UMLS. For instance, a colloquial term
“chemo brain” was commonly used to describe the single
concept of cognitive deterioration of cancer patients after
chemotherapy. In our analysis, the term was recognized as two
UMLS concepts—“chemotherapy” and “brain-body part”—even
though UMLS contained a concept for “chemo brain”. From
our experience, we inferred that the lack of colloquial language
and descriptive phrases concepts in the UMLS as well as
standard medical terminologies parser were causing boundary
failure when processing patient-generated text.

Missed Term Failures

Overview

Missed term failures occurred when a relevant term was not
identified [26,34]. We extended the literature by identifying
two causes of missed term failures associated with
patient-generated text: (1) community-specific nomenclature
and (2) misspellings.

Community-Specific Nomenclature

Community-specific nomenclature refers to members of a
community using terms that either are commonly used in a
different way elsewhere or not commonly used at all. In online
communities, members frequently create their own nomenclature
that, over time, can become vernacular that is well understood
in the community [37]. Community nomenclature poses unique
challenges and opportunities for NLP.

In particular, community nomenclature regularly referred to
relevant health-related content but resulted in three major
challenges. First, many of the community-specific terms were
not found in the UMLS. For instance, “PC” referred to “Prostate
Cancer”; however, this acronym was not contained in UMLS.
Second, community nomenclature was typically context and
community-specific. For instance, the acronym “BC” was used
for “before cancer”, “blood count”, or “breast cancer” depending
on the context. This type of ambiguous usage was also seen
with commonly accepted abbreviations. For instance, “rad” was
a common abbreviation for “radiation therapy” in the cancer
community, but “rad” could also be used for “radiation absorbed
dose”, “reactive airway disease”, “reactive attachment disorder”,
or “RRAD gene” depending on the community. Third, novel
abbreviations and acronyms constantly showed up in our data,
similar to what researchers of online communities found [37].
For instance, our dataset included newly emerged acronyms
that were not included in the UMLS, such as “LLS” and “PALS”
for “Leukemia and Lymphoma Society” and “Patient Advice
and Liaison Service”, respectively.

Misspellings

Previous research showed that patients made more medically
related misspellings at a significantly higher rate compared to
clinicians [25]. Misspellings in our dataset included
typographical errors (eg, “docotor”), phonetic errors that could
be associated with lack of familiarity with medical terms (eg,
“byopsi” and “methastasis”), and colloquial language errors
(eg, “hooooooot flash”). Biomedical NLP techniques were
typically developed using the correct spelling in training models,
thus relevant but misspelled terms were often unrecognized.
These unrecognized terms comprised a type of missed exact
match [34] that consequently become false negatives—terms
that should have been recognized but were missed. Although
previous research in health information query investigated
methods to address misspellings of patient-generated medical
terms [38,39], those methods had limitations because they
required correctly spelled medical terms in the database and
manual selection of terms among recommended terms.

Word Sense Ambiguity Failures
The most prevalent failure was word sense ambiguity, which
occurred when a term was mapped to the wrong concept because
the two concepts are spelled the same way, share the same
acronym (eg, “apt”, an acronym used for appointment was
m a p p e d  t o  o r g a n i c  c h e m i c a l
“4-azido-7-phenylpyrazolo-(1,5a)-1,3,5-triazine”), or were
spelled the same as one of their acronyms (eg, a verb “aids”
was mapped to “Acquired Immunodeficiency Syndrome”). This
failure had been identified in previous research [26,29,34-36],
but these studies did not examine the causes of this failure. From
our analysis, we identified nine causes of failure associated with
processing patient-generated text: (1) abbreviations and
contractions, (2) colloquial language, (3) numbers, (4) email
addresses and Uniform Resource Locators (URL)s, (5) Internet
slang and short message service (SMS) language, (6) names,
(7) the narrative style pronoun “I”, (8) mismapped verbs, and
(9) inconsistent mappings (by word sense disambiguation
feature). In the following sections, we describe each cause of
word sense ambiguity failures in detail and identify associated
semantic types where applicable.

Abbreviations and Contractions

Frequent use of standard abbreviations and contractions was
common in our online health communities. Online community
members frequently used contractions such as “I’d” or
abbreviations such as “i.e.” in their text. Although the use of
these shortened forms was common in informal text, it could
be a source of errors for many NLP tools. For example,
MetaMap maps “I’d” to “Incision and drainage” and mapped
“i.e.” to “Internal-External Locus of Control Scale” due to partial
matches with synonyms. Also, MetaMap was inconsistent with
some of its correct mappings for abbreviations. For instance,
abbreviations for some US states were mapped correctly (eg,
“AK” and “WA”), whereas others were often missed even
though they were in the UMLS (eg, “CA” and “FL”) or were
mismapped (eg, Virginia was mapped to “Alveolar gas volume”
when written as “V.A.”).
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Colloquial Language

Colloquial language, such as “hi” was prevalent in our dataset
and caused many failures. Although these terms are obvious to
human readers, we found they were often mapped to incorrect
terms in the UMLS. For instance, our previous example “hi”,
rather than being left unmapped, was mapped to “Hawaii”,
“ABCC8 gene”, or “AKAP4 gene” because “hi” was a synonym
for all three concepts. In our analysis, this failure was found
with many semantic types; however, terms mapped to the
semantic type of “Gene or Genome” were particularly
troublesome because of their unusual naming conventions.

Numbers: Dates, Times, and Other Numbers Not Indicating
Disease Status

Our online community posts often contained numbers that
convey important information, such as a patient’s disease status
(eg, “stage 3 breast cancer”). Other times, numbers conveyed
more logistical information, such as time of day and dates, which
were misinterpreted. For instance, in the phrase, “I got there at
4:12pm”, “12pm” was mapped to “Maxillary left first premolar
mesial prosthesis” because it was a complete match for one of
its synonyms in the UMLS. Numbers that were used to convey
diagnostic information were crucial for the identity of many
community members, and such information was often included
in an automated signature line (eg, “stage 2 grade 3 triple
negative breast cancer”) at the end of posts. Numbers indicating
dates and times often resulted in false positives, whereas health
status numbers often resulted in a different failure type (ie,
boundary failure caused by splitting a phrase). We saw this type
of failure across many different semantic types, including
“Amino Acid, Peptide, or Protein”, “Finding”, “Gene or
Genome”, “Intellectual Product”, “Medical Device”,
“Quantitative Concept”, and “Research Activity”.

Email Addresses and URLs

Online community members frequently mentioned URLs and
email addresses in our dataset. They often pointed to websites
that they found useful and gave out email addresses to start
private conversations. Parts of email addresses and URLs were
incorrectly mapped in our analysis. For instance, “net” at the
end of an email address was often mapped to the “SPINK5
gene” because one of its synonyms was “nets”. Also, “en”, a
language code that referred the English language in URLs,
incorrectly mapped to “NT5E gene” because one of its
synonyms was “eN”.

Internet Slang and SMS Language

Internet slang and SMS language, such as “LOL” (ie, “laugh
out loud” or “lots of love”) or “XOXO” (ie, hugs and kisses)
are highly prevalent in online community text but not in typical
biomedical texts. Although these terms should be obvious to
human readers, our analysis showed that Internet slang and SMS
language were often mapped to incorrect biomedical terms in
the UMLS. In particular, Internet slang and SMS language were
often mistaken for gene names, such as the mapping of “LOL”
to the LOX1 gene and “XO” to the XDH gene. To manage the
different variations of concepts, the UMLS included many
synonyms of terms. Varieties of these synonyms overlapped
with commonly used Internet slang and SMS language resulting
in word sense ambiguity failure.

Names: First, Last, and Community Handles

The use of names is also prevalent in online community posts,
particularly when posts address specific individuals. Community
members also often include their first names in a signature line
and call out other members by first names or community
handles. In our analysis, common first names were often
mistaken for UMLS concepts, such as “Meg” being mistaken
for “megestrol”, “Rebecca” for “becatecarin”, “Don” for
“Diazooxonorleucine”, and “Candy” for “candy dosage form”.
Each individual name was a complete match for one of the
UMLS concepts. We identified these mismatches across multiple
semantic types, including “Antibiotic”, “Biomedical or Dental
Material”, “Clinical Attribute”, “Diagnostic Procedure”,
“Disease or Syndrome”, “Finding”, “Hormone”, “Injury or
Poisoning”, “Laboratory Procedure”, “Mental Process”,
“Pathologic Function”, “Pharmacologic Substance”, and “Sign
of Symptom”.

Narrative Style of Pronoun “I”

Patients share a wide variety of personal experiences in narrative
form in online health communities. Thus, the use of the pronoun
“I” is prevalent in community posts but is a source of
misinterpretation. For example, over the course of the study we
discovered that “I” is typically mapped to either “Blood group
antibody I” or “Iodides”, which belong to “Amino Acid, Peptide,
or Protein”, “Immunologic Factor”, or “Inorganic Chemical”
semantic types.

Mismapped Verbs

One of the most fundamental components of NLP tools is a
part-of-speech (POS) tagger, which marks up words with their
corresponding POS (eg, verb, noun, preposition) in a phrase,
sentence, or paragraph. POS taggers are commonly used in NLP
and have many different applications, such as phrase parsers.
In our analysis, we discovered that MetaMap uses a POS tagger
called MedPost SKR (Semantic Knowledge Representation)
[40] to split text into phrases. However, it did not use the
resulting POS information when mapping to the UMLS. Such
POS failures could have been overlooked in previous studies
using biomedical text due to the fact that words like “said” or
“saw” were less prevalent in biomedical literature or even in
clinical notes. For our online community dataset, MetaMap
improperly mapped terms without discriminating between verbs
and nouns. For instance, simple verbs used in past tense, like
“said” and “saw”, were mapped as the acronym, “SAID” (ie,
Simian Acquired Immunodeficiency Syndrome) and “saw” (ie,
a medical device). Verbs in the present tense were also
problematic. For instance, “bow” and “snap” were mapped to
“Genu varum” and “Snap brand of resin”, respectively. We
observed this type of failure across different semantic types,
including semantic types where verbs were unexpected, such
as “Antibiotic”, “Biomedical or Dental Material”, and
“Pharmacologic Substance”.

Inconsistent Mappings

Two great strengths of the UMLS are its broad coverage of
concepts and its capacity to distinguish among concepts in fine
detail. This ability to provide the precise meaning of concepts
is valuable for many applications. However, this feature also
became a source for inconsistent mappings despite similar usage
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of terms in our analysis. For instance, the term “stage” was
mapped to multiple concepts in our dataset. Community
members often used the term “stage” to describe their cancer
status (eg, “stage 4 ER+ breast cancer”). Despite the seemingly
similar sentence structures and usage of the term in the sentence,
our findings showed that MetaMap inconsistently mapped

“stage” to different UMLS concepts. Six different semantic
types were identified for the UMLS concepts mapping to “stage”
(Table 1). This is a known failure of MetaMap [34]; however,
the severity of the failures shows that addressing word sense
disambiguation in patient-generated text may require particular
attention.

Table 1. Word sense ambiguity failures: inconsistent mappings of stage by MetaMap.

UMLS semantic typeConcept unique identifiersUMLS conceptMapped termSample sentence

ClassificationC0441769Stage 2Bstage 2b“My father was diagnosed with stage 2b pancreat-
ic cancer”

Clinical attributeC1300072Tumor stagestage“I'm stage 4 SLL and stage 2 CLL”

Intellectual productC0441766Stage level 1Stage 1“I was dx last year at age 46 with Stage 1”

Neoplastic processC2216702malignant neoplasm of
breast staging

Stage breast
cancer

“Almost seven years ago I was diagnosed with
stage 1 breast cancer at age 36 ½”

Qualitative conceptC1306673Stagestage“My friend was just diagnosed with Stage IV
cancer”

Temporal conceptC0205390Phasestage“My mom was diagnosed 11/07 with stage IV in-
operable EC”

Methods for Automated Failure Detection

Overview
To explore automated methods for detecting the three types of
failures we identified, we created a tool that applies
combinations of dictionary-based matching [41-43] and NLP
techniques [44-47]. We describe this detailed automatic
detection process in the following sections.

Detecting Boundary Failures
Our tool detected failures caused by incorrectly splitting a phrase
through a comparison of MetaMap’s MedPost SKR parser [40],
a biomedical text parser, and the Stanford Parser [45] (a
general-purpose parser). First, we collected all adjacent terms
that MetaMap mapped but MedPost SKR had parsed separately.
Second, we used the Stanford Parser to determine whether
adjacently mapped terms were part of the same phrase. If
adjacently mapped terms were part of the same phrase, the
combined term could deliver a more precise meaning, while
individually they often deliver different meanings [29,34]. We

found this especially problematic if the combined term was a
valid UMLS concept. For instance, we would collect “chemo
brain” as a boundary failure caused by splitting a phrase.
“Chemo” and “brain” were terms that appeared adjacent to one
another in a sentence, and their combination—“chemo
brain”—was a valid UMLS concept, but MetaMap split it into
two separate terms. However, we also collected combined terms
that were not in the UMLS because they were also cases of
improperly splitting terms. Furthermore, the missing combined
terms could provide valuable insight to completeness of the
UMLS. For instance, both “double mastectomy” and “chemo
curls” are important concepts that are frequently used by
patients; however, these concepts are missing from the UMLS
as shown in Table 2. The aforementioned steps to compare
MetaMap’s MedPost SKR parser with the Stanford Parser can
detect these important but missing terms. In our detection, we
used the shortest possible phrase identified by the Stanford
Parser. The Stanford Parser parsed phrases as structure trees to
indicate grammatical relations. In the structure tree, a shorter
phrase was often part of a longer phrase and delivered more
coherent meanings compared to a longer phrase.
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Table 2. Examples of splitting a phrase failure.

Second mapped term (UMLS
concept name)

First mapped term (UMLS
concept name)

Ideally mapped UMLS
concept

Sample sentence

Scan (Radionuclide Imaging)PET (Pet Animal)PET/CT scan“My mom had unknown primary and it was a PET scan
that helped them find the primary.”

Treatment (Therapeutic As-
pects)

Stereotactic (Stereotactic)Stereotactic Radiation
Treatment

“It was removed and I have had stereotactic treatment
along with 6 rounds of Taxol/Carbo completed in January
2012.” [sic]

Treatments (Therapeutic Pro-
cedure)

Rad (Radiation Absorbed
Dose)

Therapeutic Radiology
Procedure

“Had 25 internal rad treatments (along with cisplatin on
day 1 and 25).” [sic]

Negative (Negative)Triple (Triplicate)Triple Negative Breast
Neoplasms

“I am Triple Negative BC and there are no follow-up
treatments for us TN's.”

Mastectomy (Mastectomy)Double (Double Value Type)None available“My doc thinks I will probably end up having a double
mastectomy”

Curls (Early Endosome)Chemo (Chemotherapy Regi-
men)

None available“I thought after 9 months my hair would be back but I
have grown some type of hair that I am told is ‘chemo
curls’.”

Detecting Missed Term Failures

Overview

We identified two causes of missed term failures associated
with processing patient-generated text. The following sections
describe automatic detection of missed terms, specifically due
to community-specific nomenclature and misspellings.

Community-Specific Nomenclature

Our tool detected missed terms due to abbreviations and
acronyms in four steps. First, it ran MetaMap on the original
text and then counted the total number of mappings. Second, it
extracted common abbreviations and acronyms and their
definitions using a simple rule-based algorithm [46], but where
we manually verified the extracted terms. Third, it ran MetaMap
again after replacing the extracted abbreviations and acronyms
with their corresponding fully expanded terms. Finally, it
calculated the difference in the total mappings between the
original text and the updated text.

The simple rule-based algorithm by Schwartz and Hearst [46]
has performed well in finding abbreviations and acronyms in
documents [48,49]. We modified the algorithm to reflect typical
writing styles of online community posts. The algorithm by
Schwartz and Hearst uses (1) order of characters, (2) distance
between abbreviations/acronyms and their definitions, and (3)
presence of parentheses to find candidates for
abbreviations/acronyms and their definitions. Our tool first
identified completely capitalized words (with an exception of
the last character due to pluralization) as candidate
abbreviations/acronyms and then applied the algorithm to find
its fully expanded form. Because online community members
adopted community’s abbreviations/acronyms, we saved this
information and applied to other posts written in the same
community even when the definition was not available. For
instance, in the sentence, “My mother was diagnosed with Stage
3 Esophageal cancer (EC) earlier this year - EC also counts
smoking and alcohol as two major aggravating factors and is
an aggressive cancer”, the poster defined EC once and then
continued to use the acronym in place of esophageal cancer.
MetaMap could map esophageal cancer but not EC. Our tool

used this algorithm to detect EC and its fully expanded form,
esophageal cancer, then replaced EC with “esophageal cancer”
to ensure the concept could be identified by MetaMap.

Misspellings

Our tool detected the prevalence of missed terms due to
misspelling using three steps. First, it ran MetaMap on the
original text and counted the total number of mappings. Second,
it ran MetaMap again after correcting possible misspellings
using Google’s query suggestion service [50]. Finally, it
calculated the difference in the mappings between the original
text and the corrected text.

Detecting Word Sense Ambiguity Failure
We identified nine causes of word sense ambiguity failure
associated with processing patient-generated text. In the
following sections, we describe how to automatically detect the
word sense ambiguity failures.

Abbreviations and Contractions

To detect word sense ambiguity failures due to abbreviations
and contractions, we used an NLP tool called the Stanford POS
Tagger [44], which assigns POS to terms in text. Our tool
processed the data using the Stanford POS Tagger to count cases
where a single mapped term was tagged with multiple POS. For
instance, the Stanford POS Tagger would accurately tag “I’d”
with two different POS, that is, the personal pronoun and modal.

Colloquial Language

Detecting word sense ambiguity failure caused by colloquial
language is particularly challenging. We identified many of
these failures by narrowing our focus to consider only the “gene
or genome” semantic type because colloquial language failures
were frequently mapped to this semantic type. Our tool
automatically detected improperly mapped colloquial language
by using an existing cancer gene dictionary—a list of genes
known to be associated with cancer [43]—and counting the
number of terms categorized as a “gene or genome” semantic
type that were not in the cancer gene dictionary.
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Numbers: Dates, Times, and Other Numbers Not Indicating
Disease Status

To automatically detect improperly mapped dates and times,
we implemented a number of rule-based regular expressions to
detect times and dates that were not mapped as “Quantitative
Concept” semantic type concepts. “Quantitative Concept” is
the most appropriate semantic type based on how patients
typically used numbers in our dataset. This resulted in counting
the numbers mapped to “Amino Acid, Peptide, or Protein”,
“Finding”, “Gene or Genome”, “Intellectual Product”, “Medical
Device”, and “Research Activity”.

In our approach, we recognized two types of date or time
expression that are problematic for MetaMap. The first type
was a time expression containing the term “pm”. The second
type was a string of numbers that has been typically used to
describe age, date, or time duration. For instance, “3/4”
indicating March fourth was mapped to a concept describing
distance vision: concept unique identifier (CUI) C0442757. We
used specific regular expressions that focused on numbers with
“am” or “pm”, as well as a string of numbers with or without
non-alphanumeric characters in between numbers to identify
dates, times, and other numbers that do not indicate disease
status.

Email Addresses and URLs

Our detection process for email addresses and URLs was
completed using regular expressions to identify all the email
addresses and URLs, and then we counted the number of terms
that were mapped from email addresses or URLs. In our
approach, we used specific regular expressions matching “@”
and a typical structure of domain name (ie, a dot character
followed by 2-6 alphabetic or dot characters) for identifying
email addresses and “http” or a typical structure of domain name
for identifying URLs.

Internet Slang and SMS Language

We detected improperly mapped Internet slang and SMS
language using a 3-step process. First, we identified an Internet
dictionary with a list of chat acronyms and text shorthand [41].
Second, we manually reviewed the list to remove terms that
were also medical acronyms. In this process, we identified only
three medical acronyms, “AML”, “CMF”, and “RX” and
removed them from the list. Third, our tool automatically
identified the terms in the text by matching them with the
Internet slang/SMS language list.

Names: First, Last, and Community Handles

To identify improperly mapped names, we first combined a
number of name dictionaries that consist of first names [42]
with a list of community handles from our online community,
CancerConnect. Then, our tool counted the number of mapped
terms that matched one of the names in the combined list.

Narrative Style of Pronoun “I”

We identified a number of cases where the pronoun “I” was
improperly assumed to be an abbreviation, such as for Iodine,
because the NLP tool did not consider the contextual knowledge
from the term’s POS. One of the most fundamental components
of NLP tools is a POS tagger, which marks up words with their

corresponding POS (eg, verb, noun, preposition) in a phrase,
sentence, or paragraph. “I” as an abbreviation for Iodine should
be recognized as a noun, whereas “I” meaning the individual
should be recognized as a pronoun by a POS tagger. Our tool
used data derived from the Stanford POS Tagger [44] to count
cases where the pronoun “I” was mapped to either the “Blood
group antibody I” or “Iodides” concepts. We noticed that the
pronoun “I” was sometimes tagged as a foreign word. We
included those cases in our counts because it was a failure of
the Stanford POS Tagger.

Mismapped Verbs

To identify the improperly mapped terms without discriminating
between verbs and nouns, we used POS information from the
Stanford POS Tagger [44] to count cases where a mapped verb
term belonged to a semantic type that did not contain verbs.
The 34 semantic types (eg, “Activity” and “Behavior”) listed
under the “Event” tree of the UMLS ontology could contain
verbs; thus, we excluded verbs from these semantic types from
our analysis. We considered all verbs in the “Entity” tree of the
UMLS ontology as incorrect mappings. The “Entity” portion
includes semantic types, such as “Biomedical or Dental
Material”, “Disease or Syndrome”, “Gene or Genome”,
“Medical Device”, “Pharmacologic Substance”, for which we
do not expect verbs. Thus, our tool detected cases where verbs
were associated with the “Entity” tree of the UMLS ontology.

Inconsistent Mappings

Detecting word sense ambiguity failures leading up to this
section consisted of cases where terms were consistently mapped
improperly. However, for other word sense ambiguity failures,
MetaMap inconsistently mapped terms, both correctly and
incorrectly. The inconsistency was the result of poor
performance by MetaMap’s word sense disambiguation feature
that was designed to select the best matching concepts out of
many candidate concepts available in the UMLS. We detected
inconsistent mappings by (1) assuming that patients used terms
consistently, and (2) MetaMap accurately selecting the best
matching concepts the majority of the time. For instance, in our
online cancer community dataset, we assumed that patients
always used the term “blood test” to convey the “Hematologic
Tests” concept (CUI: C0018941), which was how MetaMap
interpreted this term two thirds of the time, rather than the less
frequent mapping to the “Blood test device” concept (CUI:
C0994779). Based on these assumptions, we detected
inconsistent mappings in two steps. First, we created a term
frequency table based on a term’s spelling and its CUI. Second,
assuming the most frequently mapped CUI was the correct
concept, we counted the number of cases where the term was
mapped to less frequent CUIs.

Results for Automated Failure Detection
The automated methods detected that at least 49.12%
(188,411/383,572) of MetaMap’s mappings for our dataset were
problematic. Word sense ambiguity failures were the most
widely occurring, comprising 82.22% among the total detected
failures. Boundary failures were the second most frequent,
amounting to 15.90% among the total detected failures, while
missed term failures were the least common, making up 1.88%
of the detected failures. Table 3 summarizes the identified
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failures as well as their causes and prevalence for automatic
detection of MetaMap’s failure on processing patient-generated
text. Our process showed the feasibility of automated failure
detection; hence showing the types of failures that our tool could
identify in similar datasets processed with biomedical NLP
tools.

We found that word sense ambiguity failures were not mutually
exclusive, and several cases had multiple causes. Thus, in Table
3, the sum of percentages for individual failures exceeded 100%.
For instance, an acronym “OMG” used for “Oh My God” was
incorrectly mapped to “OMG gene”. This particular failure was
detected as both colloquial language as well as Internet slang

and SMS language failures. To avoid redundant counts, we
detected 154,904 unique counts of word sense ambiguity failure,
making up 82.22% of failures. In Table 3, we show both
individual counts/percentages as well as the total unique
counts/percentages to provide a precise overview of word sense
ambiguity failures. Although these failures were recognized in
prior studies on MetaMap [26,29,34-36], the studies had not
presented automated methods for detecting these failures.

We manually evaluated the performance of our failure detection
tool in two parts: overall performance evaluation and individual
component level performance evaluation.

Table 3. Detecting MetaMap’s failures on processing patient-generated text.

Percentage of failure, %CountCauses of failureFailure type

15.9029,9651.1 Splitting a phrase1. Boundary failures

0.6211672.1 Community specific nomenclatures2. Missed term failures

1.2623752.2 Misspellings

0.224163.1 Abbreviations and contractions3. Word sense ambiguity failures

2.2141623.2 Colloquial language

0.081433.3 Numbers

0.7714483.4 Email addresses and URLs

1.8334423.5 Internet slang and SMS language

5.3410,0613.6 Names

32.4461,1193.7 Narrative style of pronoun ‘I’

27.1751,1933.8 Mismapped verbs

15.5629,3083.9 Inconsistent mappings

82.22154,904Total number of unique word sense ambiguity failures

188,411Total number of unique failures

Methods for Performance Evaluation of Automated
Failure Detection
We randomly selected 50 cases (ie, mappings) that our tool
identified as incorrect mappings from each of the 12 causes of
failures, totaling 600 cases that served as positive cases. We
then randomly selected another 600 cases from the rest of the
mappings not detected as incorrect mappings according to our
tool to serve as the negative cases. We then mixed up the
selected 1200 cases and manually assessed the accuracy of
mappings through a blind procedure.

We also measured individual performance on each of the 12
detection techniques. We used the previously selected 600
negative cases and individual technique’s 50 positive cases to
assess the performance. For boundary failure, we examined
whether the mapped terms could deliver precise conceptual
meaning independent of additional phrases. For missed term
failure, we investigated whether the tool had accurately corrected
the spellings and verified the results of the new mappings. For
word sense ambiguity failures, we examined whether MetaMap
appropriately mapped terms based on the rest of the context.
The unit of analysis was a single mapping, and we evaluated

our results using precision, recall, accuracy, and F1 score.
Precision measures the proportion of predicted positive instances
that are correct. Recall measures the proportion of positive
instances that were predicted. Accuracy measures the
percentages of correctly predicted instances among the total
number of instances examined. F1 score is the weighted
harmonic mean—reflecting both performance and balance—of
precision and recall. In all measures, higher scores reflect better
performance.

Results for Performance Evaluation

Overview
Table 4 shows the performance of the automatic failure detection
tool. The failure detection tool achieved overall precision, recall,
accuracy, and F1 score of 83.00%, 92.57%, 88.17%, and
87.52%, respectively. At the individual component level,
methods using dictionary-based matching or regular expression
matching performed more accurately than methods using
existing NLP techniques. In the following sections, we discuss
findings of individual component of the automatic failure
detection tool and its performance.
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Table 4. Performance (in %) of automatic failure detection and its individual component.

F1 scoreAccuracyRecallPrecisionCauses of failureFailure type

80.3996.7878.8582.001.1 Splitting a phrase1. Boundary failures

93.6299.02100.0088.002.1 Community specific nomenclatures2. Missed term failures

86.0297.8893.0280.002.2 Misspellings

88.1798.2095.3582.003.1 Abbreviations and contractions3. Word sense ambiguity failures

100.00100.00100.00100.003.2 Colloquial language

100.00100.00100.00100.003.3 Numbers

100.00100.00100.00100.003.4 Email addresses and URLs

100.00100.00100.00100.003.5 Internet slang and SMS language

79.5297.21100.0066.003.6 Names

100.00100.00100.00100.003.7 Narrative style of pronoun “I”

48.4894.43100.0032.003.8 Mismapped verbs

58.9392.8053.2366.003.9 Inconsistent mappings

87.5288.1792.5783.00Total

Boundary Failure
Our automatic failure detection tool identified 15.90% of the
total failures as due to splitting a phrase. The performance
evaluation of this task achieved precision, recall, accuracy, and
F1 score of 82.00%, 78.85%, 96.78%, and 80.39%, respectively.
It is important to note that a single concept can produce multiple
split phrase failures. For instance, the phrase “stage 4
Melanoma” was mapped to three concepts: “stage”, “4”, and
“Melanoma”. Two boundary failures occurred in this phrase.
The first failure occurred between “stage” and “4”; the second
failure occurred between “4” and “Melanoma”. By focusing on
a pair of mapped terms at a time, we correctly identified two
failures that occurred in the phrase “stage 4 Melanoma”. We
considered only adjacent paired mappings because splitting a
single coherent phrase into two or more UMLS concepts was
clearly a more significant problem. However, split phrase
failures could occur in non-paired mappings as well, and we
are underestimating the prevalence of split phrases.

Detecting Community-Specific Nomenclature
Less than 1% of failures were due to community-specific
nomenclature, and the automatic detection system achieved
precision, recall, accuracy, and F1 score of 88.00%, 100.00%,
99.02%, and 93.62%, respectively. It should be noted that we
underestimated the number of missed terms because the
algorithm [46] can identify abbreviations or acronyms only if
they were previously defined by members at some point. In
addition, we would not recognize cases where MetaMap still
missed the fully expanded term.

Detecting Misspellings
We automatically assessed that misspellings were responsible
for 1.26% of failures. However, we observed few cases of
incorrect assessment due to failures of Google’s query
suggestion service. For instance, some medications were
incorrectly recommended. “Donesaub”, a misspelling of
“Denosumab” was mapped to “dinosaur”. Furthermore, even
with correct recommendation, MetaMap did not always map to

the right concept. For instance, “Wsihng” was correctly
recommended to be “Wishing”, but MetaMap mapped it to
“NCKIPSD gene”. Despite a few cases of incorrect assessment,
the misspelling component performed relatively well, achieving
precision, recall, accuracy, and F1 score of 80.00%, 93.02%,
97.88%, and 86.02%, respectively.

Detecting Abbreviations and Contractions
Improperly mapped abbreviations comprised less than 1% of
failures. Although this was seldom, the automatic detection
system performed relatively well, achieving precision, recall,
accuracy, and F1 score of 82.00%, 95.35%, 98.20%, and
88.17%, respectively.

Detecting Colloquial Language
Incorrectly mapped “gene or genome” semantic types comprised
2.21% of failures, and the automatic detection system achieved
precision, recall, accuracy, and F1 score of 100.00%, 100.00%,
100.00%, and 100.00%, respectively. With this process, we also
detected terms like “lord” and “wish” that may not be perceived
as colloquial language. Nevertheless, they were improperly
mapped as “gene or genome” semantic type. It is also important
to note that different disease-specific communities should utilize
different gene dictionaries.

Detecting Numbers: Dates, Times, and Other Numbers
Not Indicating Disease Status
Our automatic failure detection tool identified less than 1% of
failures as improperly mapped numbers. The performance
evaluation of this task achieved precision, recall, accuracy, and
F1 score of 100.00%, 100.00%, 100.00%, and 100.00%,
respectively. However, we are underestimating this failure
prevalence because MetaMap improperly mapped more than
half of the “Quantitative Concept” semantic type concepts in
our dataset. We did not include this semantic type and
underestimated this particular failure because few cases were
correctly mapped.
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Detecting Email Addresses and URLs
Improperly mapped email addresses or URLs comprised less
than 1% of failures, and the automatic detection system achieved
precision, recall, accuracy, and F1 score of 100.00%, 100.00%,
100.00%, and 100.00%, respectively. It is important to note that
the basis for our manual assessments was how patients had
intended to use the term. For instance, MetaMap mapped “org”
at the end of a URL to “Professional Organization or Group”
concept. Although assessment of such cases can be subjective,
we followed the basic rule of reflecting patients’ intentions.

Detecting Internet Slang and SMS Language
A total of 1.83% of failures resulted from Internet slang and
SMS language terms. Like other dictionary-based matching
techniques, our automatic detection system performed relatively
well, accomplishing precision, recall, accuracy, and F1 score
of 100.00%, 100.00%, 100.00%, and 100.00%, respectively.

Detecting Names: First, Last, and Community Handles
We automatically assessed that names accounted for 5.34% of
failures. However, the name dictionary matching did not perform
as well as other dictionary-based matching components. We
discovered that unique but popular names, such as “Sunday”,
“Faith”, and “Hope” were incorrectly mapped when used as
nouns in a sentence. The name dictionary component achieved
precision, recall, accuracy, and F1 score of 66.00%, 100.00%,
97.21%, and 79.52%, respectively.

Detecting Narrative Style of Pronoun “I”
We found that 32.44% of failures resulted from pronoun “I”.
Although the use of the pronoun “I” could be considered a part
of colloquial language, we noted it as a different cause of failure
due to its high frequency. The automatic detection system
accomplished precision, recall, accuracy, and F1 score of
100.00%, 100.00%, 100.00%, and 100.00%, respectively.

Detecting Mismapped Verbs
We automatically assessed that mismapped verbs accounted for
27.17% of failures; however, the detecting mismapped verbs
component performed poorly, achieving precision, recall,
accuracy, and F1 score of 32.00%, 100.00%, 94.43%, and
48.48%, respectively. We discovered that although Stanford
POS Tagger has identified verbs correctly, we made the false
assumption that verbs did not belong to the entity part of the
UMLS ontology. However, verbs like “lost” and “wait” belong
to the “Functional Concept” semantic type, which is under the
entity part of the UMLS tree. Thus, the detecting mismapped
verbs component of our automatic failure detection tool
incorrectly identified such verbs as failures.

Detecting Inconsistent Mappings
Our automatic failure detection tool identified 15.56% of the
total failures due to inconsistent mappings. The performance
evaluation of this task achieved precision, recall, accuracy, and
F1 score of 66.00%, 53.23%, 92.80%, and 58.93%, respectively.
We found two reasons for the relatively low precision. First,
we did not account for cases where the most commonly mapped
concept is not the correct mapping. For instance, in our dataset
“radiation” was mapped to “radiotherapy research” (CUI:

C1524021) two-thirds of the time when community members
actually meant “therapeutic radiology procedure” (CUI:
C1522449). We incorrectly assessed if less frequent mappings
were accurate. Second, we missed cases when correct mappings
do not exist. For instance, the verb “go” was incorrectly but
consistently mapped as “GORAB gene”. In our automated
failure detection analysis, our tool overlooked terms like “go”
that were consistently mismapped.

Results

We characterized (1) boundary failures, (2) missed term failures,
and (3) word ambiguity failures and discovered 12 causes for
these failures in our manual review. We then used automated
methods and detected that almost half of 383,572 MetaMap’s
mappings were failures. 82.22% of failures were word sense
ambiguity. 15.90% of failures were boundary failure. 1.88% of
failures were missed term failures. The automated failure
detection achieved precision, recall, accuracy, and F1 score of
83.00%, 92.57%, 88.17%, and 87.52%, respectively.

Discussion

Principal Considerations
We first discuss challenges of using out-of-the-box biomedical
NLP tools, such as MetaMap, to process patient-generated text.
We then discuss the contributions and wider implications of
our study for research activities that need to manage the
constantly changing and overwhelming amount of
patient-generated data. We end with summarizing our
contributions to the medical Internet research community.

Figure 1 illustrates the challenges of processing
patient-generated online health community text and the common
failures of biomedical NLP tools on that text. In an example
sentence, “Hi Meg, I wish my docotor would haven’t said I’d
have chemo brain. It’s 12PM and I’m signing off! LOL Don”,
MetaMap produced 12 mappings, all of which were incorrect,
and overlooked one misspelled term, “docotor”, thus producing
13 failures.

Some of these failures are already known problematic failures
of MetaMap [26,29,34-36]. Our findings extend prior work by
identifying the causes for each failure type. Leveraging our
understanding of those causes, we developed automated
techniques that identified these previously highlighted failures
effectively without having to produce manually annotated
datasets. In demonstrating the feasibility of our automated failure
detection tool, we delineated the use of easily accessible NLP
techniques and dictionaries. These techniques can independently
examine each failure type. We provided a detailed demonstration
of our failure detection tool to allow researchers to select the
parts of our approach that meet the focus of their NLP tool
assessment. Additionally, our detection approach can be
modified and used to rectify failures in NLP tools.

We focused our research on MetaMap; however, findings from
our study can apply to other NLP tools in a similar manner. Few
failure causes, such as inconsistency of word sense
disambiguation feature, pertain more to MetaMap than other
tools. However, any NLP tools that provide semantic
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connections require a similar word sense ambiguity feature.
Moreover, different NLP tools could excel in different areas,
and our automated failure detection can cost-effectively
highlight problematic areas. Similarly, our techniques for
detecting failures could strengthen the performance of other
NLP tools to process patient-generated text and more traditional
types of text. For instance, the word sense ambiguity failure
caused by neglecting POS information can also be problematic
in different types of text, including biomedical literature. That
failure might surface less frequently due to differences in
sentence structure between the biomedical literature and
patient-generated text. Nevertheless, it is a significant problem
that applies to both types of text. Applying such POS
information when mapping a term could increase the accuracy
of the mappings from a variety of texts. Another example is the
missed term failure caused by community nomenclature.
MetaMap or other NLP tools will miss terms if particular
synonyms are missing from the vocabulary source. Researchers
could use the algorithm by Schwartz and Hearst [46] to collect
various synonyms that are used in different domains and
frequently update the vocabulary sources, such as UMLS.
Furthermore, researchers could use the splitting-a-phrase
detection technique to not only prevent boundary failures, but
collect new medical jargon (eg, “chemo curls”) and identify
important concepts missing in the UMLS (eg, “double
mastectomy”).

The dictionary-based matching and NLP techniques used in our
detection process were evaluated in previous studies [44-46].
However, these studies were conducted in different domains
and have been shown to produce errors. Moreover, these tools
were not evaluated for patient-generated text. In addition, the
automated detection techniques are generally limited to the
coverage of the UMLS and MetaMap’s capability to map when
accurate and full spellings were provided. To strengthen our
findings, we evaluated each detection method as well as the
overall performance (Table 4). However, our findings could be
biased towards cancer community text and could be further
strengthened by generalizing our results in different platforms
or patient groups. It is also plausible that we have not

encountered all failure types or causes for other
patient-generated health data contexts.

Moreover, a number of updates were made for both the UMLS
and MetaMap [51] since the beginning of our study. To maintain
consistency, we continued to use the same versions of the UMLS
and MetaMap. However, we used the latest version of MetaMap
(2013) and the UMLS (2013AB) to process a sample of 39 posts
that were illustrated here and then compared the results to our
findings. Although some of these causes were amended in the
new version of MetaMap, the majority (33/39, 85%) of the
outcomes remained unchanged or changed but still problematic.
All the improvements (6/39, 15%) were word sense ambiguity
failures. The improved cases included (1) colloquial languages,
(2) email addresses and URLs, (3) Internet slang and SMS
language, (4) mismapped verbs, and (5) two cases of inconsistent
mappings. Despite these improvements, none of the described
12 causes of failures had been completely addressed. The lack
of significant improvement further illustrated the magnitude of
the challenges of processing patient-generated text. Because
technologies, source vocabularies, and characteristics of text
continue to be updated in the field of NLP, the need for low-cost
automated methods to assess the updates will continuously
increase. We demonstrate the feasibility of such automated
approaches in detecting common failures using MetaMap and
patient-generated text.

Although our study focused on online health community text,
the insights inform efforts to apply NLP tools to process various
types of patient-generated text, including blogs or online
journals, which share similar narrative writing styles and
colloquial language. Moreover, Facebook and email provide
conversational interactions similar to the interaction in online
health communities. Tweets about emergency responses [5],
public health trends [52], or clinical notes from electronic
medical records (EMR) could contain a host of abbreviations
that NLP tools could incorrectly map. Thus, our failure detection
techniques could be applied in these other contexts to assess
the capability of processing different types of patient-generated
text.

Figure 1. Example failures that resulted from the application of MetaMap to process patient-generated text in an online health community (blue terms
represent patient-generated text; black terms represent MetaMap’s interpretation; and red terms represent failure type).
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Conclusion
Processing patient-generated text provides unique opportunities.
However, this process is fraught with challenges. We identified
three types of failures that biomedical NLP tools could produce
when processing patient-generated text from an online health
community. We further identified causes for each failure type,

which became the basis for applying automated failure detection
methods using pre-validated NLP and dictionary-based
techniques. Using these techniques, we showed the feasibility
of identifying common failures in processing patient-generated
health text, at a low cost. The value of our approach lies in
helping researchers and developers quickly assess the capability
of NLP tools for processing patient-generated text.
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