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Abstract

Background: Citation counts for peer-reviewed articles and the impact factor of journals have long been indicators of article
importance or quality. In the Web 2.0 era, growing numbers of scholars are using scholarly social network tools to communicate
scientific ideas with colleagues, thereby making traditional indicators less sufficient, immediate, and comprehensive. In these
new situations, the altmetric indicators offer alternative measures that reflect the multidimensional nature of scholarly impact in
an immediate, open, and individualized way. In this direction of research, some studies have demonstrated the correlation between
altmetrics and traditional metrics with different samples. However, up to now, there has been relatively little research done on
the dimension and interaction structure of altmetrics.

Objective: Our goal was to reveal the number of dimensions that altmetric indicators should be divided into and the structure
in which altmetric indicators interact with each other.

Methods: Because an article-level metrics dataset is collected from scholarly social media and open access platforms, it is one
of the most robust samples available to study altmetric indicators. Therefore, we downloaded a large dataset containing activity
data in 20 types of metrics present in 33,128 academic articles from the application programming interface website. First, we
analyzed the correlation among altmetric indicators using Spearman rank correlation. Second, we visualized the multiple correlation
coefficient matrixes with graduated colors. Third, inputting the correlation matrix, we drew an MDS diagram to demonstrate the
dimension for altmetric indicators. For correlation structure, we used a social network map to represent the social relationships
and the strength of relations.

Results: We found that the distribution of altmetric indicators is significantly non-normal and positively skewed. The distribution
of downloads and page views follows the Pareto law. Moreover, we found that the Spearman coefficients from 91.58% of the
pairs of variables indicate statistical significance at the .01 level. The non-metric MDS map divided the 20 altmetric indicators
into three clusters: traditional metrics, active altmetrics, and inactive altmetrics. The social network diagram showed two subgroups
that are tied to each other but not to other groups, thus indicating an intersection between altmetrics and traditional metric
indicators.
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Conclusions: Altmetrics complement, and most correlate significantly with, traditional measures. Therefore, in future evaluations
of the social impact of articles, we should consider not only traditional metrics but also active altmetrics. There may also be a
transfer phenomenon for the social impact of academic articles. The impact transfer path has transfer, or intermediate, stations
that transport and accelerate article social impact from active altmetrics to traditional metrics and vice versa. This discovery will
be helpful to explain the impact transfer mechanism of articles in the Web 2.0 era. Hence, altmetrics are in fact superior to
traditional filters for assessing scholarly impact in multiple dimensions and in terms of social structure.

(J Med Internet Res 2013;15(11):e259) doi: 10.2196/jmir.2707
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Introduction

The evaluation of an academic paper’s influence is important
for scientists and academic management mechanisms [1].
Scientific papers are regarded by the scientific community as
the formal carriers of recent findings and innovative ideas from
scientific experiments [2]. Official periodicals are considered
the major medium used in scientific communication [3]. Citation
rates per paper and the impact factor per scientific journal have
been used as evaluation indicators for measuring academic
impact [4,5].

Impact factor is based on journals, not journal articles. It is
unlikely that one type of metric (for example, citation counts)
can adequately inform evaluations across multiple disciplines,
departments, career stages, and job types. In addition, a newly
published article requires time to accumulate citations—a
citation delay may range from 3 months to 1-2 years, sometimes
longer in formal publications. By contrast, only a few days are
required to tabulate statistics from viewing, downloading, tags,
digs, tweets, and blogs in scientific social networks.

A reasonable evaluation should include not only quantitative
assessments but also the peer-review process. The traditional
peer-review process has been criticized for its scalability, that
is, the inability to cope with an increasingly large number of
scientific paper submissions, given the limited number of
available reviewers and publication time constraints.

With the development of the open access platform [6,7] and the
practical application of academic social networks [8,9], scientific
achievements have now been able to spread more rapidly
[10-13]. Given these new developments, the open access
platforms, social network tools, and other online usage and
comment-based statistics have been paving the way to new
forms of scientific evaluation, which could complement
traditional metrics such as the citation rate and the impact factor.

Hence, researchers and publishers are exploring article-level
metrics, which include not only citation rates but also potential
extracted indicators such as page view, download, click, note,
recommend, tag, post, trackback, and comments [14-17]. By
using such multidimensional indicators, we aim to broaden
researchers’ vision in the field of scientometrics and to provide
richly measurable metadata for post peer review. For example,
Priem and Costello [18] found Twitter citations are generated
considerably more quickly than traditional citations, with 40%
occurring within 1 week of the cited resource’s publication. In
this paper, we call these new indicators “altmetric indicators”.

Compared to traditional indicators, they are superior in terms
of coverage, efficiency, and scalability.

In light of the advantage of altmetrics, many authors have called
for its further evaluation. Neylon and Wu [14] noted the
unsatisfactory results of traditional methods for measuring
impact, and they assert that good filters of quality, importance,
and relevance to apply to scientific literature are required.
Taraborelli [19] suggested that collaboratively aggregated
metadata may help to close the gap between traditional
citation-based metrics and usage-based metrics for scientific
evaluation. He also proposed that social software could be used
to extract large-scale indicators of scientific quality. Priem and
Hemminger [3] have likewise stated that citation-based methods
poorly evaluate and filter articles and considered an examination
of the usage of articles in Web 2.0 services novel and promising.
They developed the most comprehensive list of Web 2.0 tools
and assessed the potential value and the availability of data.
Groth and Gurney [20] used keyword and citation similarity
maps to analyze differences between blog posts in chemistry
and in academic literature. Weller and Puschmann [21]
categorized scientific tweets on Twitter and devised a method
for identifying and measuring citations.

Do altmetrics correlate with traditional measures? Some
researchers have studied this question and provided evidence
that altmetric and traditional indicators correlate significantly.
For example, Yan and Gerstein [16] examined the correlation
between 18 different metrics, including article usage (HTML
views, PDF downloads, XML downloads), citation statistics,
blog coverage, social bookmarking, and online ratings in the
PLOS Article-Level Metrics. They observed that the number
of citations correlates most strongly with access statistics
(r=.44), with the highest correlation being with number of PDF
downloads (r=.48). Additionally, Priem et al [17] studied the
correlations between 19 types of altmetric indicators and
concluded that the scholarly bookmarking services Mendeley
(r=.26) and CiteULike (r=.16) correlated with citations, while
services such as Delicious did not. Li et al [22] investigated
1613 journal papers and studied the correlation between two
online reference managers (Mendeley and CiteULike) and two
types of citations (WoS and Google Scholar). Their results
indicate that the Mendeley user counts significantly correlate
with WoS citations, and Mendeley attracted more users than
did CiteULike. Eysenbach [23] selected a cumulative number
of tweetations (ie, a citation in a tweet) 7 days after article
publication as tweetation counts and then calculated the
correlation between citations and tweetations. The Pearson
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correlation coefficients for the citation versus tweetation counts
were statistically significant at a 5% level and ranged from .57
to .89. Additionally, Google Scholar citations were more
strongly correlated with tweetations than were Scopus citations.

In summary, all previous researchers have focused on
demonstrating the performance of altmetric indicators and
correlations between traditional and altmetric indicators.
However, important questions such as the dimensionality and
structure of altmetrics have not been explored. In other words,
the overall configuration is unclear and requires further
verification. For example, how many dimensions should
altmetric indicators be divided into? How does the interactive
structure look? Motivated by these questions, we attempt to
look into the similarities and the differences between traditional
and altmetric indicators. We will represent the interactive
structure visually in a social network context.

For our study, it is vital to make sure altmetric indicators have
the attributes of openness and maneuverability for samples
before conducting an altmetrics study. The publisher platforms
where articles are being written, read, and published, such as
JMIR, PLOS, and social networks, such as Twitter, CiteULike,
blogs, or Mendeley, where articles are being shared,
recommended, discussed, and rated, make their data available
through standardized application programming interfaces (APIs),
which allow authors, editors, and academic administration to
select the most meaningful data for a particular use at a
particular time. These individuals could thus showcase a wider
range of article impact in an immediate, open, and individualized
way.

Article-Level Metrics represent a comprehensive set of impact
indicators that capture usage, citations, social bookmarking and
dissemination activity, media and blog coverage, discussion
activity, and ratings. API for Article-Level Metrics is freely and
publicly available. More than 150 developers have downloaded
the API for data reuse to determine the total impact of articles.
Hence, we consider these data to provide a good sample for our
study.

On selection of the tests, we considered the options proposed
by researchers, such as graduated colors for correlation
coefficient matrixes [16,17] and methods that Priem used for
data transformations of datasets [17]. However, we did not adopt
factor analysis to disclose the clusters of altmetric indicators
because the Kaiser-Meyer-Olkin (KMO) is low (KMO=0.45).
Instead, we explored a nonmetric multidimensional scaling
(MDS) method to reveal the dimensions of alternative metrics
after nonparametric testing; presumably, there are social
networks relationships between multidimensional altmetrics,
so we used a social network analysis to map the altmetrics
interactions.

Methods

We downloaded an “Article-Level Metrics” dataset (specifically,
a sample of 33,128 academic articles) from the PLOS API
website on December 14, 2011. The dataset includes data for a
number of metrics, for example, counts of article usage, citation
rates, and other types of metrics (eg, social bookmarks,

comments, notes, blog posts, and ratings). We noticed that the
values of the altmetric variables differ too markedly in
dimensions, thus resulting in smaller absolute values weighing
less when calculating the distances between values. Therefore,
variables were handled as dimensionless with an algorithm
“mean of 1” to keep the coefficients of the original variables
constant [24].

First, we drew a histogram to discern approximately whether
the data followed a normal distribution. In a normal distribution,
the 2 “halves” of the histogram appear as mirror images of each
other [25]. In a skewed distribution, one tail of the distribution
may commonly be considerably longer or drawn out relative to
the other tail. For example, in a “skewed right” distribution, the
tail is on the right [26,27]. Many statistical tests are based on
the assumption that the data are sampled from a normal
distribution. However, when the variables are skewed
(non-normal), a nonparametric test is appropriate [28]. In this
paper, we also performed a one-sample Kolmogorov-Smirnov
(K-S) test (a type of nonparametric test).

Second, a correlation, indicated by a correlation coefficient,
measures the strength and the direction of a linear relationship
between two variables [29]. For an abnormal distribution, it is
more advisable to use the Spearman rank correlation than the
Pearson correlation. Examining a table of coefficient numbers
is impractical because a matrix of 20x20 is large, so graphical
visualization tools are suitable. Various methods have been
proposed, from heat maps to correlation ellipses [30]. We
visualized the correlation matrix using a color graph generated
by the Corrplot package in the R programming language.

Third, MDS could generate a visual representation of the
subjective dimensions that are not directly indicated in the data
[31]. Many applications of this method are available in
bioinformatics [32,33] and ecological science [34-36]. A
nonmetric MDS analysis enabled us to find a nonparametric
monotonic relationship between similarities in the item-item
matrix, the Euclidean distances between items, and the location
of each item in the low-dimensional space [37]. We explored a
nonmetric MDS analysis method with the software package
UCINET to determine the types of variables that have a higher
degree of similarities.

Fourth, an MDS diagram can reveal the similarities among
variables, though not the strength and the structure of the
relationships among variables. Visualizing the correlation matrix
in a network context is useful. Researchers observe social
relationships based on the theory that a social network comprises
nodes and ties. Nodes represent individual actors within the
network, and ties represent relationships between variables and
individuals [38]. We used NetDraw (a social network analysis
software package) to visualize the interaction of the variables
and its strength. We also aimed to ascertain the relative
importance of variables in interconnecting the network. The
social network diagram helped us distinguish the number of
clusters and the corresponding degrees of clustering.
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Results

Right-Skewed Distribution and the Pareto Principle
We used a one-sample K-S test to determine whether the
altmetric variables are normally distributed. In general, if P<.05,
then the data are considered to follow an abnormal distribution
[39]. Our results showed that the P<.001 for all variables;
therefore, we rejected the normality assumption. One way to
determine whether a variable is “significantly skewed” is
comparing the numerical value for “skewness” with twice the
standard error of skewness, including the range from minus
twice to plus twice the standard error of skewness [40]. Because
the skewness value falls outside this range, we concluded that
the distribution is significantly non-normal and, in this case,
positively skewed. Table 1 shows the integration of the results,
including the K-S test, the skewness, and the kurtosis of
variables. Table 2 lists the legends for B1 to B20.

We also drew histograms and obtained a group of skewed
histograms. Because variable Bi is highly skewed throughout

testing (the average of the skewness is 1.267, and the average
of the kurtosis is 2.033), we log-transformed it into variable Di

(after excluding zeros) to show its distribution more clearly.
Figure 1 summarizes the frequency distribution of the
cumulative variable Di. The right tail is longer, and the
distribution’s mass is concentrated on the left of the figure, thus
confirming that the 20 histograms are right-skewed distributions,
according to the direction of the tail. We inferred that skewness
may be related to the meaning of the variables: the percentage
of relative activities mentioned in the articles cannot be less
than zero.

As shown in the histogram of downloads and page views (from
D to G), the data have two relative peaks that follow a bimodal
distribution, similar in appearance to the back of a two-humped
camel. This distribution is reminiscent of the Pareto Principle
(or the 80-20 rule), that is, approximately 80% of the effects
arise from 20% of the causes [41,42]. With reference to the
theory of knowledge scatter [43], this pattern suggested that
80% of download counts were generated by 20% of the articles.

Table 1. Integration of the results including K-S, skewness, and kurtosis of variables (N=33,128).

KurtosisSkewnessK-S

SEKSEbSAsymp siga (2-tailed)Z

0.02788.4790.0137.271<.00159.205B1

0.027299.6920.01315.342<.00173.141B2

0.027218.2560.01310.778<.00164.031B3

0.0271405.7720.01327.596<.00179.442B4

0.027128.0740.0137.902<.00183.492B5

0.027405.5900.01315.694<.00170.240B6

0.027908.9770.01321.363<.00181.168B7

0.027421.8140.01318.727<.00194.749B8

0.0274051.4190.01360.796<.00192.407B9

0.027436.7390.01317.715<.00194.019B10

0.0271075.0950.01329.028<.00188.133B11

0.027916.2290.01320.820<.00172.099B12

0.027359.7580.01316.017<.00193.919B13

0.0271010.5830.01325.092<.00191.698B14

0.027770.3750.01319.392<.00193.719B15

0.027566.9460.01317.786<.00191.612B16

0.0272102.9850.01340.112<.00193.434B17

0.027556.1580.01317.025<.00187.564B18

0.0271447.8640.01332.325<.00192.924B19

0.0271205.0240.01327.080<.00194.296B20

aasymptotic significance
bstandard error
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Table 2. Legends for B1 to B20.

LegendsAltmetric indicators

Citations recorded by CrossRefB1

Citations recorded by PubMed CentralB2

Citations recorded by ScopusB3

Total HTML page viewsB4

Total PDF downloadsB5

Total XML downloadsB6

Combined usage (HTML + PDF + XML)B7

Blog postings indexed by Nature BlogsB8

Blog postings indexed by BloglinesB9

Blog postings indexed by ResearchBlogging.orgB10

Trackbacks made by external sitesB11

Social bookmarking made by users of CiteULikeB12

Social bookmarking made by users of ConnoteaB13

Ratings on PLOS websiteB14

Average rating that the article has receivedB15

Note threads started on the articleB16

Replies to Note threadB17

Comment threads started on the articleB18

Replies to Comment threadsB19

“Star Ratings” including a text commentB20
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Figure 1. Histograms of frequency distribution for altmetric indicators.

Spearman Correlation Coefficients and Their
Visualization in R
We performed the normality test to conclude that neither
altmetric variable is normally distributed. We used a Spearman
rank order correlation to examine the correlation pattern among
altmetric indicators with SPSS 18.0. Tables 3 and 4 present the
results of the Spearman rank correlation coefficient for altmetric
indicators.

The correlation coefficient can range from -1 to 1, with -1 or 1
indicating a perfect relationship [44]. The Spearman rho between
B14 and B15 is 1. B14 represents ratings on the PLOS website,
and B15 represents an article’s average rating. Therefore, it is
unsurprising that the relationship is approximately perfect. The

similarities in correlation strength was observed for another pair
of variables (B4 and B7) with “rho=1”, likely because HTML
page views (expressed by B4) accounted for the largest
proportion of the combined (HTML + PDF + XML) usage of
articles (expressed by B7).

The second strongest correlation, rho=.899, is between total
HTML page views (expressed by B4) and total PDF downloads
(expressed by B5), possibly because they are two aspects of
article usage counts, and people choose view or download with
approximately equivalent frequencies. The Spearman rho
between B6 and B13 is –.25, so we can predict that as B6 (total
XML downloads) increases, B13 (social bookmarking made by
Connotea users) will decrease.
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The Spearman coefficients from 91.58% of the variable pairs
are significant at the .01 level, with one pair of variables (B9
and B12) correlating at the .05 significance level. Approximately
no correlation exists between approximately 7.89% variable
pairs. B9 (blog postings indexed by the Bloglines) also hardly
correlate with eight variables (ie, B13 to B20), possibly implying
that Blogline is unpopular and not widely used by researchers
and citizen scientists.

The correlation matrix also yields the probability of being
incorrect if we assume that the relationship observed in our
sample accurately reflects the relationship among variables of
altmetric indicators in the actual population from which the
sample was drawn, labeled as Sig (2-tailed). We found that
91.58% of the probability value is <.001 (the value is rounded
to three digits), well below the conventional threshold of P<.05,
thus supporting our hypothesis. There is a relationship (ie, the
coefficient is not 0) in the predicted direction (positive), and
we can generalize the results to the population (P<.05).

To show the correlation among altmetrics clearly, we visualized
the correlation coefficient matrices with graduated colors and
a blue-white-red scale. An R programming package, corrplot,
helped map the correlation coefficients to the specified color

square. We chose two color series to identify positive and
negative correlation coefficients. Blue corresponds to a
correlation of approximately 1; red to approximately –1; and
white to approximately 0. To economize space, we multiplied
the correlation coefficients by 100 and added them to the squares
in the color correlation matrix. See Figure 2.

We can readily identify clusters with strong similarities and
locate possible redundant indicators. Matching this map with
the physical meaning revealed the following: (1) the citation
indicators (B1, B2, and B3) and download indicators (B4, B5,
B6, and B7) are clustered into two categories, which we call
the “citation metrics class” and “download metrics class”,
respectively; (2) the citation and download indicators are
combined into a clustering, which we call the “traditional
metrics class”; (3) a group of indicators (B14 to B20) are
conjoined into another clustering type, called the “rating, note,
and comment metrics class”; and (4) finally, as a general rule,
we suggested that all four blog-aggregating services would
record different sets of data, so the datasets require comparison
and “de-duplication” to obtain a complete picture of blog activity
(as recorded by these services), as would all three citation
services.
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Table 3. Spearman rank correlation coefficient for B1-B11 (N=33,128).

B10B9B8B7B6B5B4B3B2B1

.088a.019a.050a.338a.153a.378a.322a.738a.599a1.000Corr. coefficientB1

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.063a.023a.051a.237a.079a.268a.226a.669a1.000.599aCorr. coefficientB2

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.084a.020a.040a.415a.244a.444a.402a1.000.669a.738aCorr. coefficientB3

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.156a-.002.070a.996a.662a.899a1.000.402a.226a.322aCorr. coefficientB4

<.001.784<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.125a.002.065a.928a.616a1.000.899a.444a.268a.378aCorr. coefficientB5

<.001.695<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.089a-.005.039a.672a1.000.616a.662a.244a.079a.153aCorr. coefficientB6

<.001.399<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.153a-.001.070a1.000.672a.928a.996a.415a.237a.338aCorr. coefficientB7

<.001.892<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.158a.019a1.000.070a.039a.065a.070a.040a.051a.050aCorr. coefficientB8

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

-.0011.000.019a-.001-.005.002-.002.020a.023a.019aCorr. coefficientB9

.918<.001.892.399.695.784<.001<.001<.001Sig (2-tailed)

1.000-.001.158a.153a.089a.125a.156a.084a.063a.088aCorr. coefficientB10

.918<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.214a.035a.071a.053a-.015a-.004.063a.073a.061a.072aCorr. coefficientB11

<.001<.001<.001<.001.006.426<.001<.001<.001<.001Sig (2-tailed)

.128a.014b.086a.293a.156a.299a.288a.222a.248a.240aCorr. coefficientB12

<.001.014<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.031a.010.042a.067a-.025a.071a.065a.102a.159a.120aCorr. coefficientB13

<.001.071<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.101a.005.055a.085a.050a.057a.087a.072a.075a.074aCorr. coefficientB14

<.001.328<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.101a.005.055a.085a.050a.057a.087a.072a.076a.074aCorr. coefficientB15

<.001.350<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.070a-.001.028a.073a.042a.053a.075a.067a.061a.069aCorr. coefficientB16

<.001.794<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.058a-.002.036a.043a.026a.024a.045a.027a.021a.027aCorr. coefficientB17

<.001.662<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.133a.010.063a.097a.043a.056a.099a.096a.101a.090aCorr. coefficientB18

<.001.063<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.103a.008.052a.079a.041a.053a.082a.057a.055a.058aCorr. coefficientB19

<.001.137<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)
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B10B9B8B7B6B5B4B3B2B1

.073a.009.037a.060a.035a.043a.062a.049a.049a.050aCorr. coefficientB20

<.001.090<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

aCorrelation is significant at the .01 level (2-tailed).
bCorrelation is significant at the .05 level (2-tailed).
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Table 4. Spearman rank correlation coefficient for B12-B20 (N=33,128).

B20B19B18B17B16B15B14B13B12B11

.050a.058a.090a.027a.069a.074a.074a.120a.240a.072aCorr. coefficientB1

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.049a.055a.101a.021a.061a.076a.075a.159a.248a.061aCorr. coefficientB2

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.049a.057a.096a.027a.067a.072a.072a.102a.222a.073aCorr. coefficientB3

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.062a.082a.099a.045a.075a.087a.087a.065a.288a.063aCorr. coefficientB4

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.043a.053a.056a.024a.053a.057a.057a.071a.299a-.004Corr. coefficientB5

<.001<.001<.001<.001<.001<.001<.001<.001<.001.426Sig (2-tailed)

.035a.041a.043a.026a.042a.050a.050a-.025a.156a-.015aCorr. coefficientB6

<.001<.001<.001<.001<.001<.001<.001<.001<.001.006Sig (2-tailed)

.060a.079a.097a.043a.073a.085a.085a.067a.293a.053aCorr. coefficientB7

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.037a.052a.063a.036a.028a.055a.055a.042a.086a.071aCorr. coefficientB8

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.009.008.010-.002-.001.005.005.010.014b.035aCorr. coefficientB9

.090.137.063.662.794.350.328.071.014<.001Sig (2-tailed)

.073a.103a.133a.058a.070a.101a.101a.031a.128a.214aCorr. coefficientB10

<.001<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.096a.128a.148a.068a.073a.124a.125a.059a.078a1.000Corr. coefficientB11

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.064a.073a.097a.045a.067a.097a.098a.194a1.000.078aCorr. coefficientB12

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.039a.023a.060a.007.031a.049a.050a1.000.194a.059aCorr. coefficientB13

<.001<.001<.001.215<.001<.001<.001<.001<.001Sig (2-tailed)

.602a.143a.190a.109a.097a1.000a1.000.050a.098a.125aCorr. coefficientB14

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.599a.141a.189a.107a.096a1.0001.000a.049a.097a.124aCorr. coefficientB15

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.065a.112a.116a.283a1.000.096a.097a.031a.067a.073aCorr. coefficientB16

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.094a.132a.085a1.000.283a.107a.109a.007.045a.068aCorr. coefficientB17

<.001<.001<.001<.001<.001<.001.215<.001<.001Sig (2-tailed)

.127a.448a1.000.085a.116a.189a.190a.060a.097a.148aCorr. coefficientB18

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

.105a1.000.448a.132a.112a.141a.143a.023a.073a.128aCorr. coefficientB19

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

J Med Internet Res 2013 | vol. 15 | iss. 11 | e259 | p. 10http://www.jmir.org/2013/11/e259/
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


B20B19B18B17B16B15B14B13B12B11

1.000.105a.127a.094a.065a.599a.602a.039a.064a.096aCorr. coefficientB20

<.001<.001<.001<.001<.001<.001<.001<.001<.001Sig (2-tailed)

aCorrelation is significant at the .01 level (2-tailed).
bCorrelation is significant at the .05 level (2-tailed).

Figure 2. Visualization of the correlation matrix in R.

Nonmetric MDS With UCINET and Network
Visualization With NetDraw
Nonmetric MDS is often preferred because it tends to provide
a better “goodness-of-fit” (stress) statistic, which is
correspondingly better with lower stress (0=perfect fit) [45].

Generally, stress levels below 0.1 are considered excellent,
while levels above 0.2 are considered unacceptable.
Accordingly, a higher RSQ (r-squared) value (1=perfect fit) is
better, and RSQ values exceeding 0.6 are usually considered
excellent [46]. We conducted nonmetric MDS with UCINET
6. The output map is shown in Figure 3.
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The reliability value stress was 0.00424, considerably less than
0.1, and the validity value RSQ was 0.99998, greater than 0.60,
which equals an excellent goodness of fit. The map plots each
variable, thus permitting us to examine the similarity according
to the variables’ proximity to each other. We labeled three
dimensions, or categories, with each dimension implicating a
potential factor.

The three clusters and their interpretations are as follows. (1)
The first cluster contains B1 to B7 and B12. This cluster has 8
spots, and they are more interconnected. B4 and B7 occupy
approximately the same coordinate. This cluster implicates a
potential factor of 1, which we call a traditional metrics group
because 7 out of 8 indicators in this cluster are citation and
download indicators. (2) The second cluster contains B10, B11,
and B14 to B20. This cluster has 9 spots, and they are more
interconnected. B14 and B15 occupy approximately the same
coordinate. This cluster implicates a potential factor of 2, and
we call it the trackback, rating, note, and comment metrics
group. (3) The third cluster contains B8, B9, and B13. This
cluster has 3 spots, yet they are less interconnected, with more
diverse networks. This cluster implicates a potential factor of
3, and we call it the blog and social bookmark metrics group.

We know that an MDS graph can represent the relations among
nodes, while a network diagram can describe the social structure.

Hence, we visualized the results of the nonmetric MDS from a
network context with NetDraw (version 2.084, which is
distributed with UCINET 6). The network diagram is shown in
Figure 4.

A good drawing of a graph can immediately suggest some of
the most important features of the overall network structure.
The diagram indicates the following findings: (1) not all nodes
are connected, as three nodes (B8, B9, and B13) that are
disconnected from the others; (2) two subgroups or local
“clusters” of actors are tied to each other, not to other groups,
and (3) some actors have many ties, and some, few ties. Four
nodes (B10, B16, B17, and B19) have two ties, while the other
nodes have one tie or zero ties. These nodes are embedded in
the neighborhood by the two clusters; that is, they are important
for connecting the two clusters, which we call cluster 1 and
cluster 2. Thus, examining the node and the “node network”
(ie, “neighborhood”) indicates a sense of the structural
constraints and opportunities that an actor faces and may help
us to understand an actor’s role in a social structure. Finally, it
indicates that (4) some difference in the strength of the
relationship between a multivariable and its center remain. For
example, B12 and B2 have a weak relationship with their center,
while B6 and B20 have a relatively stronger relationship (that
is, “1.0”) with their centers, and B17 has the strongest
relationship (that is, “1.4”) with its center.
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Figure 3. MDS diagram of altmetric indicators.
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Figure 4. Social network structure diagram of altmetric indicators.

Discussion

Principal Findings
Our study is the first to use the MDS and network map to
analyze the dimensions and interactions among altmetrics
variables. Although MDS diagrams have been used for
co-citation [47] and co-word analysis [48], it is still innovative
to draw nonmetric MDS diagrams for altmetrics variables. We
found three dimensions or metrics groups, that is, traditional
metrics (citation and download metrics), active altmetrics
(trackback, rating, note, and comment metrics), and inactive
altmetrics (blog and social bookmark metrics).

More importantly, we transformed the MDS diagram into a
social network graph, whose advantage is that it displays the
overall network structure. In research related to altmetrics,
authors have developed co-word social network maps for articles
published in blogs [20]. Our map represents the MDS diagram
in a social network context. We found that the
ResearchBlogging.org posts, note threads, and replies to
comment threads are the three intermediary metrics between
traditional metrics and active altmetrics; in other words, they
possess attributes of traditional metrics and active altmetrics.

What do these findings imply? There may be a transfer
phenomenon for social impact of academic articles. Then, Figure
4 could be considered an article impact transitive map. Along
the impact transfer path, B10, B16, B17, and B19 are the
transfer, or intermediate, stations that transport article social
impact between active altmetrics and traditional metrics. Aman
[49] quantified the extent to which preprints in arXiv accelerate
scholarly communication using many subject samples. He found
that, in all fields except biology, a significant citation advantage
exists in terms of speed and citation rates for articles with a
previous preprint version on arXiv. Shuai et al [50] studied
whether Wikipedia shapes academic impact and showed that
articles mentioned on Wikipedia have higher citations than do
unmentioned articles. Our finding of altmetrics interactions
posits that an intermediate station and a potential pathway may
exist by which impact activator arXiv, Wikipedia, or other open
access platforms and social network tools likely help articles
attract more online usage, in turn accelerating online social
activities such as comment, note, post, rate, or bookmark and

thus expanding an article’s social influence, reflected in larger
citation rates and higher dissemination speed. This results in
the observation that altmetrics is the superior way to look at
publications.

Another finding is that altmetrics correlate with traditional
measures significantly; that the citation and download metrics
cluster closely together by the Spearman correlation method is
consistent with previous results [17] to some extent. This is
exemplified by the correlation between citation counts and
access statistics (r=.30); the highest correlation being with
number of PDF downloads (r=.44); and the correlations between
citations and scholarly bookmarking services CiteULike (r=.24)
and Connotea (r=.13). Before studying the correlation of
altmetric indicators, we looked more closely at the choice of
method for skewed data. However, the Spearman and color
square visualization methods we used differ from the methods
used in previous research. For example, the Pearson, not the
Spearman correlation method, was used by Eysenbach [23],
while our study added a color square visualization method to
better reveal correlations. Furthermore, Yan [16] found that
article access metrics, citation metrics, and social bookmarking
metrics broadly cluster, a formation signified by relatively high
correlation coefficients among the metrics; we found additional
clusters such as the “rating, note, and comment metrics class”.
Moreover, we came up with a “traditional metrics class”, which
integrates the “citation metrics class” and the “download metrics
class”.

Our third contribution is the adoption of the theory of
nonparametric testing throughout analysis. Based on the
one-sample K-S test and the shapes of the histograms, we
concluded that the distribution is significantly non-normal and
positively skewed. Priem summarized a group of histograms
similarly but did not perform a nonparametric test to prove the
abnormal distribution or to compute the skewness [17]. We
calculated the Spearman coefficients (obtained by nonparametric
measures), not Pearson coefficients, to calculate the correlation
strengths. Although the Spearman measure has been used by
Yan and Gerstein [16], their sample size (13,000 articles) was
smaller than ours (33,128 articles). More importantly, the
Spearman coefficient is statistically fit for abnormal datasets.
Additionally, the nonmetric MDS employed to detect the
similarity of the variables is also a nonparametric test.
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Our results also support that altmetric indicators may obey
certain rules, for example, the Pareto law. Eysenbach [23] was
the first to report the Pareto law for tweetation (one of the
altmetric indicators). He mined all tweets containing links to
articles in the Journal of Medical Internet Research between
July 2008 and November 2011. He explored the dynamics, the
content, and the timing of tweets based on a subset of 1573
tweets on approximately 55 articles and found an uneven
distribution in which the top 20% of the tweet authors, as ranked
by number of tweetations, accounted for 63.4% of all
tweetations. This tweetation regularity follows a Pareto
distribution (80/20 rule). Similarly, our frequency distribution
histograms from D to G (four types of altmetric indicators)
indicate that the top 20% of articles triggered 80% of download
and page views and thus verified that the distribution follows
the Pareto law. Therefore, we offer a complementary explanation
of the Pareto regularities using altmetric indicators.

Based on our experimental results, we conclude that altmetrics
complements traditional statistics and contains approximately
three dimensions: traditional, active, and inactive metrics. In
summary, our study demonstrates a novel interaction among
the altmetrics variables and analyzes articles’ social impact
transfer mechanism.

Our conclusion that the distribution is significantly non-normal
and positively skewed rests primarily on the results obtained
with the Article-Level Metrics dataset downloaded from PLOS
API. Both Priem [17] and Yan [16] studied altmetrics based on
a similar dataset. Our views regarding whether the distribution
of variables is normal are consistent with theirs. However, we

demonstrated the necessity of nonparameter testing in analyzing
the altmetrics dataset.

Limitations
However, as alternative metrics indicators are preset in the
dataset, the implication of our study’s findings is limited. This
study was a preliminary attempt, and we are preparing to test
and verify these findings for other types of datasets. The findings
of correlations have been confirmed by another dataset
concerning altmetric indicators in [22] and [23]. Further research
is required on the dimension, structure, and potential impact
transfer mechanism.

Conclusions
In conclusion, we studied the dimension and the structure of
altmetrics with visual graphics. Our findings provide an
important direction regarding the current practices of authors,
editors, and academic administrations. Authors should pay more
attention to the scholarly social impact that originates from
active altmetrics and then participate more in related activities
such as rating websites, noting, and commenting on articles.
The publishers should attempt to launch an open peer review
and consider scientific citizens’ perspectives before deciding
whether to publish. They should also explore the value and the
applications of post-publication interactivity in terms of ratings,
notes, or comments. Academic administrations should track the
dissemination of published articles (in terms of multiple types
of citation, ratings, comments, and notes) and access up-to-date
altmetrics data to determine article quality or the impact context
for tenure and promotion decisions.
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Abbreviations
API: application programming interface
KMO: Kaiser-Meyer-Olkin
K-S tests: Kolmogorov-Smirnov Test
MDS: multidimensional scale
RSQ: r-squared
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