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Abstract

Background: Over the past few years, the world has witnessed an unprecedented growth in smartphone use. With sensors such
as accelerometers and gyroscopes on board, smartphones have the potential to enhance our understanding of health behavior, in
particular physical activity or the lack thereof. However, reliable and valid activity measurement using only a smartphone in situ
has not been realized.

Objective: To examine the validity of the iPod Touch (Apple, Inc.) and particularly to understand the value of using gyroscopes
for classifying types of physical activity, with the goal of creating a measurement and feedback system that easily integrates into
individuals’ daily living.

Methods: We collected accelerometer and gyroscope data for 16 participants on 13 activities with an iPod Touch, a device that
has essentially the same sensors and computing platform as an iPhone. The 13 activities were sitting, walking, jogging, and going
upstairs and downstairs at different paces. We extracted time and frequency features, including mean and variance of acceleration
and gyroscope on each axis, vector magnitude of acceleration, and fast Fourier transform magnitude for each axis of acceleration.
Different classifiers were compared using the Waikato Environment for Knowledge Analysis (WEKA) toolkit, including C4.5
(J48) decision tree, multilayer perception, naive Bayes, logistic, k-nearest neighbor (kNN), and meta-algorithms such as boosting
and bagging. The 10-fold cross-validation protocol was used.

Results: Overall, the kNN classifier achieved the best accuracies: 52.3%–79.4% for up and down stair walking, 91.7% for
jogging, 90.1%–94.1% for walking on a level ground, and 100% for sitting. A 2-second sliding window size with a 1-second
overlap worked the best. Adding gyroscope measurements proved to be more beneficial than relying solely on accelerometer
readings for all activities (with improvement ranging from 3.1% to 13.4%).

Conclusions: Common categories of physical activity and sedentary behavior (walking, jogging, and sitting) can be recognized
with high accuracies using both the accelerometer and gyroscope onboard the iPod touch or iPhone. This suggests the potential
of developing just-in-time classification and feedback tools on smartphones.

(J Med Internet Res 2012;14(5):e130) doi: 10.2196/jmir.2208
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Introduction

It is widely recognized that lack of physical activity and excess
of sedentary behavior are associated with increased health risks
for obesity, type 2 diabetes, cardiovascular disease, depression,
and all-cause mortality [1]. In the United States, physical
inactivity is alarmingly prevalent. A study based on the
2003-2004 National Health and Nutrition Examination Survey
data suggested that on average Americans spend about 55% of
their waking time, or 7.7 hours per day [2], being sedentary.
Another study based on the same data showed that less than 5%
of adults meet the national 30 minutes/day guideline for physical
activity [3].

Measurement of physical activity and sedentary behavior is a
fundamental, yet nontrivial, task for developing effective
intervention tools. Self-reported data are subject to bias and
errors. Objective methods enabled by advancement in
accelerometer technologies are gaining increasing attention.
Researchers have explored different accelerometer-equipped
monitoring devices, such as customized sensor boards [4,5],
Actigraph accelerometer [6,7], DynaPort [8], and Pegasus
activity monitors [9], for detecting activities. Although some
of these devices are small, they are still an extra burden for users
to wear.

More recently, smartphones equipped with accelerometers have
become ubiquitous. Carried by people throughout the day,
smartphones are an ideal platform for monitoring physical
activity and sedentary behavior and for just-in-time intervention.
Furthermore, they have powerful computational capabilities
and allow development of customized applications that integrate
monitoring and intervention. Researchers have used
accelerometers on Nokia N95 phones [10,11] and Android
phones [12] to detect common activities such walking, stair
climbing, jogging, and sitting.

Similar to earlier studies [10-12], in this study the goal was to
create a valid activity classification tool that uses sensors
onboard today’s smartphones. However, this study is
distinguished by the following three characteristics.

Device
We conducted our study with the iPod Touch (Apple Inc.,
Cupertino, CA, USA). It has essentially the same sensors and
computing platform as the iPhone, yet costs much less. We
compared the obtained results with findings from the two
previous studies that used the Nokia N95 and Android phones.

Sensor
While past work relied mainly on accelerometers on cell phones,
we combined acceleration with orientation readings from the
newly available gyroscope sensor. In June 2010, Apple became
the first to introduce gyroscopes to a mobile phone with the
launch of the iPhone 4. Since then, an increasing number of
mobile phones have added gyroscopes on board. However, few

researchers have explored the use of gyroscopes as a way to
measure physical activity. This study demonstrated one of the
first steps in assessing whether gyroscope readings are beneficial
in classifying activities. As accelerometers measure acceleration,
gyroscopes measure rotation. Our hypothesis was that combining
these two complementary sensors could improve recognition
accuracy of activities.

Activity Intensity
Previous research [10-12] classified common physical activities
such as walking on stairs and walking on level ground without
differentiating speed. However, it has been shown that the
intensity of these activities matters: walking at a normal pace
is classified as light physical activity with an intensity of <3
metabolic equivalents (work metabolic rate/resting metabolic
rate), whereas brisk walking is considered moderate physical
activity with an intensity of 3-6 metabolic equivalents [13]. The
US Centers for Disease Control and Prevention guideline on
physical activity for adults is 150 minutes of moderate-intensity
aerobic activity (eg, brisk walking) every week. Thus, we
differentiated the speed of common activities, such as walking
and stair climbing, at normal and brisk paces.

Methods

Data Collection

Recruitment
Eligibility criteria were being 19–60 years of age, speaking
English, having no existing medical conditions that prevent
performing moderate-intensity physical activity, and being able
to climb and descend stairs. We drew a convenience sample
from the University of California, San Diego. Men were
recruited through the university’s campuswide listserv. About
43 men responded with interest in participating and 6 were
recruited. We recruited 5 women within the Center for Wireless
& Population Health Systems in the California Institute for
Telecommunications and Information Technology and 5 from
a pool of potential study participants at the Moores Cancer
Center, San Diego, CA, USA. All participants signed study
consent forms and all protocols were approved by the
university’s institutional review board. Table 1 shows the
characteristics of participants.

Hardware Platform
We used the iPod Touch (Apple Inc.) as the hardware platform
for data collection. It has essentially the same accelerometer
and gyroscope sensors as the iPhone (Apple Inc.) (Figure 1),
one of the most widely used smartphones on the market. They
run the same iOS operating system as well. The
fourth-generation iPod Touch we employed used
STMicroelectronics (Geneva, Switzerland) LIS331DLH
accelerometer and L3G4200D gyroscope [14]. The iPod Touch
is 11.18 cm high, 5.89 cm wide, and 0.71 cm deep, and weighs
100.9 g.
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Table 1. Demographic characteristics of study participants (n = 16).

%nCharacteristic

Age group (years)

38%621–30

19%331–40

6%141–50

38%651–60

Gender

63%10Female

38%6Male

Body mass index range (kg/m2)

50%818.5–24.9 (normal)

6%125–29.9 (overweight)

25%430–34.9 (moderately obese)

19%335–40 (severely obese)

Figure 1. Coordinate system of the iPod touch (figure courtesy of Apple Inc.).

Software Setup
We developed an application on the iPod Touch for easy data
collection. It allows users to specify an activity type and the
device location (often referred to as the labeling or annotation
step), start and stop data recording using a toggle button, and

transmit collected data to research staff. We used the
CMDeviceMotion class of iOS 4.2 application programming
interface that encapsulates processed acceleration and gyroscope
measurements. More specifically, we used the userAcceleration
property of CMDeviceMotion to get the 3-axis acceleration
(gravitational force) that the user imparts to the device (ie, total
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acceleration minus gravity), and the rotationRate property to
get the device’s rate of rotation (in radians per second) around
three axes, with the gyroscope bias removed by Apple’s
proprietary Core Motion algorithms. Both accelerometer and
gyroscope were configured to sample at a 30 Hz (33.33
milliseconds) rate.

Activities
We studied 13 activity types in total, 4 of which were paced by
research staff in a laboratory setting on a treadmill, and the rest

were self-paced by participants to simulate a free-living
condition. The details of these activities are described in Table
2. As shown in the last column, these 13 activities were further
grouped into 9 classes: slow walking, normal walking, brisk
walking, jogging, sitting, normal upstairs, normal downstairs,
brisk upstairs, and brisk downstairs. For example, the prescribed
laboratory activity A2 (3.0 mph walking) and the self-paced
activity A11 (400 m normal walking) belong to the same class,
C2 (normal walking). That is, a classification system should be
able to recognize both activities as normal walking.

Table 2. Physical activity type descriptions and classifications.

ClassDescriptionActivity name

Prescribed

C1. Slow walkingWalking at 1.5 mph on a treadmill for 3 minutesA1. 1.5 mph walking

C2. Normal walkingWalking at 3.0 mph on a treadmill for 3 minutesA2. 3.0 mph walking

C3. Brisk walkingWalking at 4.0 mph on a treadmill for 3 minutesA3. 4.0 mph walking

C4. JoggingJogging at 5.5 mph on a treadmill for 3 minutesA4. 5.5 mph jogging

Self-paced

C5. SittingSeated in a chair, remaining stillA5. Sitting

C6. Normal upstairsAscending one flight of stairs (19 steps) at a normal paceA6. Normal upstairs

C7. Normal downstairsDescending one flight of stairs (19 steps) at a normal paceA7. Normal downstairs

C8. Brisk upstairsAscending one flight of stairs (19 steps) at a brisk paceA8. Brisk upstairs

C9. Brisk downstairsDescending one flight of stairs (19 steps) at a brisk paceA9. Brisk downstairs

C1. Slow walkingWalking for one lap around a 400 m track at a slow paceA10. 400 m slow walking

C2. Normal walkingWalking for one lap around a 400 m track at a normal paceA11. 400 m normal walking

C3. Brisk walkingWalking for one lap around a 400 m track at a brisk paceA12. 400 m brisk walking

C4. JoggingJogging for one lap around a 400 m track.A13. 400 m jogging

Collection Protocol
Due to limited treadmill and track availability, not every
participant completed the activities in the order specified in
Table 2. Some participants followed that order, while others
completed the 400 m track activities (A10–A13) first, followed
by stair tasks (A6–A9), and finally the laboratory activities
(A1–A5). The participant carried the iPod touch device in an
armband for jogging and in a front shorts pocket for all other
activities. When in the pocket, the device was oriented with the
screen facing away from the body and the 30-pin connection
port facing up. When the device was in the armband, the screen
was faced away from the body with the 30-pin connection port
facing down. Not all participants were able to complete all tasks.
For example, approximately half of the participants were unable
to perform all of the strenuous jogging activities (A4. 5.5 mph
jog and A13. 400 m jog). The whole protocol took about 2 hours
to complete. Each participant received US $50 as compensation.

Data Preprocessing
The time series of collected sensory data (30 Hz) were stored
in a comma-separated values file per activity, per participant.
The beginning and the end of all files were manually trimmed
in a data preprocessing phase. This was because at the beginning
of data recording the research staff had to start the data recording

by pressing a toggle button and then place the device in the right
position on the participant; at the end of the activity they
collected the device and stopped data recording.

Feature Extraction

Window Size
The data vector containing 3-axis acceleration and 3-axis
rotation rate recorded at a time instant is called a sample. To
reduce noise and capture cyclic patterns of motion, features
were not computed on each single sample, but on a sliding
window of samples. Many studies have indicated the superiority
of using a 1-second window size [4,11,15,16]; others have used
larger window sizes such as 2 seconds [9] and 10 seconds [12]
to capture more cyclic patterns. We experimentally compared
window sizes of 1 second, 2 seconds, 5 seconds, and 10 seconds,
and found that the 2-second window size (60 samples in our
case) produced the best classification performance. The detailed
comparison results are shown in the next section. Finally, the
use of a 50% overlap between consecutive windows has been
shown to be beneficial by past research [17]. Thus, we used a
1-second overlap in our sliding windows.
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Features
As discussed before, we used an accelerometer and gyroscope
as our signal sources. In the literature, different features have
been employed for acceleration-based activity recognition, such
as mean [4,5,9,12], variance [11,12], spectral entropy [4, 5],
and fast Fourier transform coefficients [5,9,11,18]. To select
features, we performed extensive comparative experiments on
these various features. The following features (variants of 4
basic ones) produced the best classification results:

• Mean for each axis of acceleration, each axis of rotation
rate (from gyroscope), and acceleration magnitude,

computed as the square root of (A2
x + A2

y + A2
z) in the

sliding window
• Standard deviation for each axis of acceleration, each axis

of rotation rate, and acceleration magnitude in the sliding
window

• Sum of acceleration magnitude in the sliding window
• Fast Fourier transform magnitude, or magnitude of the

first five coefficients of the fast Fourier transform power

spectrum (for each axis of acceleration). As Preece et al [9]
showed, this fast Fourier transform feature is overall the
best-performing feature among all compared time,
frequency, and wavelet features for all activities.

Results

Classifier Comparison
We used the Waikato Environment for Knowledge Analysis
(WEKA) machine learning toolkit [19] to train and compare
the performance of the classifiers C4.5 (J48) decision tree,
multilayer perception, naive Bayes, logistic, and k-nearest
neighbor (kNN). For all classifiers, the default WEKA settings
(version 3-6-6) were used. We used 10-fold cross-validation
for all experiments. Table 3 shows the comparison results using
a 2-second window size. Among these basic classifiers, kNN
generally produced the best accuracy results. Thus, we further
applied meta-algorithms including boosting (AdaBoostM1) and
bagging to the kNN classifier but observed no clear benefits as
shown in Table 3.

Table 3. Comparison of classification accuracies by classifier.

BaggingBoostingNBdLogisticMLPcJ48bkNNaActivity

94.1%94.1%61.3%88.3%90.8%86.3%94.1%C1. Slow walking

92.2%92%55.7%74.2%84.6%80.9%92%C2. Normal walking

90.1%89.9%64.9%68.7%85%82.2%90.1%C3. Brisk Walking

91.7%92.2%79%92.2%91.5%91.7%91.7%C4. Jogging

100%100%98.5%100%100%99.6%100%C5. Sitting

69.8%69.8%30.2%47.9%42.7%51%69.8%C6. Normal upstairs

77.3%79.4%32%46.4%54.6%64.9%79.4%C7. Normal downstairs

69%70.4%22.5%19.7%33.8%69%70.4%C8. Brisk upstairs

43.1%52.3%35.4%33.8%24.6%44.6%52.3%C9. Brisk downstairs

89.9%90.2%63.2%77.2%83.4%83.0%90.2%Weighted average

a k-nearest neighbor.
b C4.5 decision tree.
c Multilayer perception.
d Naive Bayes.

In general, the kNN classifier achieved high accuracies for
walking at different paces (90.1%–94.1%), jogging (91.7%),
and sitting (100%). Stair walking proved to be the most
challenging activity, with recognition accuracies ranging from
52.3% to 79.4%.

Table 4 presents the confusion matrix generated by kNN.
Among all the misclassified sample segments (n = 274), a
significant number were caused by the difficulty of
differentiating walking at different speeds (n = 101) and
differentiating walking on stairs from walking on a level ground

(n = 103). Fortunately, compared with walking on level ground
(which has a classification accuracy of 90.1%–94.1%), stair
walking is only a small part of daily activities for most people.
Confusion also existed between brisk walking and jogging (with
n = 57 sample segments incorrectly classified). This may be
due to the different speeds participants used in self-paced
situations. It is interesting to focus on the spectrum from slow
walking to jogging. These activities were almost never confused
with staircase motion or with sitting. Moreover, the predicted
activity was almost always either correct or one speed gradation
off; for instance, slow walking was never mistaken for jogging.
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Table 4. Confusion matrix (k-nearest neighbor classifier with accelerometer and gyroscope features).

Classified as...Activity

C9C8C7C6C5C4C3C2C1

000000530572C1 = Slow walking

1054001360229C2 = Normal walking

2010025475177C3 = Brisk walking

020003893210C4 = Jogging

00002660000C5 = Sitting

00467002158C6 = Normal upstairs

0077400376C7 = Normal downstairs

15000011081C8 = Brisk upstairs

340010014160C9 = Brisk downstairs

Window Size Comparison
As discussed above, different window sizes have been used in
the literature, including 1 second [3,9,15], 2 seconds [20], and
10 seconds [11]. We experimentally compared window sizes
of 1 second, 2 seconds, 5 seconds, and 10 seconds using the
kNN classifier, with overall accuracies of 87.7%, 90.2%, 88.5%,
and 84.2%, respectively. The 2-second window size achieved
the best overall classification performance in terms of weighted
average accuracy.

Effect of Gyroscope
We made one of the first attempts to evaluate the effect of a
gyroscope in measuring physical activities. Our hypothesis was

that adding gyroscope data could improve the overall
classification accuracy. This was confirmed by the results as
shown in Table 5. Using both rotation rate (from the gyroscope)
and acceleration features (from the accelerometer) with kNN
resulted in higher accuracies for all activity classes than when
using only acceleration features, with improvement ranging
from 3.1% to 13.4%.

Gyroscope data are useful because almost all activities involve
some sort of orientation change of the phone. This makes it a
powerful complementary data source to the accelerometer,
which only measures linear motion along specified directions.

Table 5. A comparison of classification accuracies using acceleration features only versus using both acceleration and rotation rate features (k-nearest
neighbor classifier).

DifferenceAcceleration+

rotation rate

AccelerationActivity

+4.5%94.1%89.6%C1. Slow walking

+6.2%92%85.8%C2. Normal walking

+12.1%90.1%78%C3. Brisk walking

+6.3%91.7%85.4%C4. Jogging

0%100%100%C5. Sitting

+4.2%69.8%65.6%C6. Normal upstairs

+13.4%79.4%66%C7. Normal downstairs

+5.6%70.4%64.8%C8. Brisk upstairs

+3.1%52.3%49.2%C9. Brisk downstairs

+6.5%90.2%83.7%Weighted average

Comparison With Prior Work
Table 6 shows a comparison of classification accuracies obtained
in our study against those reported in three previous studies.
However, the differences between studies should be interpreted
with caution because they can be attributed to many factors (as
listed in Table 7). The most significant factor is that different
datasets were used in each study.

The lack of a shared dataset in the research community makes
cross-study comparison difficult, particularly on feature types,
sliding window sizes, and classifiers. To accelerate future
research on assessment of activity using smartphones, we are
sharing our anonymized iPod touch dataset with the research
community. The dataset is accessible through the iDash Data
Repository [20].

J Med Internet Res 2012 | vol. 14 | iss. 5 | e130 | p. 6http://www.jmir.org/2012/5/e130/
(page number not for citation purposes)

Wu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Accuracy comparison with prior work.

Current studyKwapisz et al

[12]

Reddy et al

[11]

Lu et al

[10]

Activity

100%95%95.6%97.7%Sitting (still)

94.1% (slow), 92% (normal), 90.1% (brisk)91.7%96.8%96.6%Walking

91.7%98.3%91.0%98%Running or jogging

69.8% (normal), 70.4% (brisk)61.5%NDNDaUpstairs

79.4% (normal), 52.3% (brisk)44.3%NDNDDownstairs

a Not done.

Table 7. Methodology comparison with prior work.

Current studyKwapisz et al [12]Reddy et al [11]Lu et al [10]Feature

iPhone/iPod TouchAndroid phonesNokia N95 phoneNokia N95 phone (iPhone
unevaluated)

Device

Accelerometer, gyroscopeAccelerometer, global posi-
tioning system

AccelerometerAccelerometerSignal sources

Mean, SD, sum, magnitude,
fast Fourier transform magni-
tude

Mean, variance, energy, and
the density functional theory
energy coefficients

Mean, SD, average, absolute
difference, magnitude, time
between peaks, and binned
distribution

Mean, variance, mean cross-
ing rate, spectrum peak, sub-
band energy (ratio), spectral
entropy

Features

2 seconds10 seconds1 second4 secondsWindow sizes

k-nearest neighborMultilayer perceptionDecision tree + Discrete Hid-
den Markov Model

Support vector machineClassifier

Upstairs (at different speeds),
downstairs (at different
speeds), running, being still,
walking (at different speeds)

Upstairs, downstairs, running,
being still, walking

Cycling, running, being still,
riding in a vehicle, walking

Cycling, running, being still,
riding in a vehicle, walking

Activities

Discussion

Principal Results
This study is the first step in our effort to develop integrated
tools to measure and intervene in physical activity and sedentary
behavior. Combining time and frequency features of both
acceleration and gyroscope measurements from sensors onboard
smartphones, we classified common categories of physical
activity and sedentary behavior (sitting, walking, and jogging
at different paces) with high accuracy (90.1%–94.1%); up and
down stair walking were classified at 52.3%–79.4% accuracies.
Including orientation readings from a gyroscope proved to be
beneficial for recognizing all activities studied.

Limitation
We collected data using a convenience sample of participants.
As motion pattern varies with individuals, future studies would
benefit from using multiple demographic and physiological
variables to inform participant designs. Furthermore, data were
collected with the device placed in specific positions (armband
for jogging, and shorts pocket for other activities). Jogging with
only armband placement of the device likely influenced the
signal pattern for this activity and may have contributed to the
high classification accuracy we observed. Further investigation
is needed to evaluate classification accuracies with more variable
placement of the device (eg, hand, back pants pocket, or

backpack). It will also be necessary to test the accuracy of
activity classification in a free-living context, where individuals
make natural transitions between activities such as sitting to
standing and jogging to walking. Machine learning algorithms
for classification often benefit from having diverse observations
or subjects, because the machine can then learn more patterns
of individual movement. Therefore, applying our classification
methodology (features, window size, and classifiers) to a larger
dataset would most likely result in higher accuracies.

We focused on classification of a somewhat narrow range of
activities that pertained to ambulatory movements and sitting
posture. Including other activities such as bicycling will be
important to more fully capture the spectrum of physical
activities in which people engage. However, classifying a wider
range of activities might result in lower accuracies than were
obtained in this study.

The nature of the false-positives shown in the confusion matrix
was that when activities were misclassified it was usually by
one speed gradation (eg, brisk walking misclassified as normal
walking or jogging). This suggests that it might be possible to
significantly improve accuracy by calibrating the prediction
thresholds to individual users. This is an important area to
explore in future work.
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Conclusion
This study is among the first to validate smartphone sensors
including an accelerometer and gyroscope for activity
recognition. The results suggest clear benefits of using a
gyroscope as an additional data source for classifying activities.
Including other signal data sources from the phone such as its
global positioning system may further improve the system, but
only for specifically identifying outdoor activities, and with the
potential cost of reducing the battery life of the smartphone.
Other sensors such as heart rate monitors might also further
improve identifying the intensity of activities (eg, brisk walking
compared with jogging). However, the trade-off of the extra

burden of wearing an additional sensor would limit the public
health impact of our system.

This study provided important indications of the possibilities
and limitations of using a smartphone as an activity data
collector. This system has potential high ecological validity
because it requires people to carry only one device that they
commonly carry with them already. The next step in our research
is to test an onboard classifier application on the phone that can
prompt users when needed for annotations in order to learn and
classify individual activity patterns with high accuracy. The
final step will be testing the feedback component that can offer
individually tailored prompts and suggestions to increase
physical activity and decrease sedentary time.
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