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Abstract

Background: The Google Flu Trends service was launched in 2008 to track changes in the volume of online search queries
related to flu-like symptoms. Over the last few years, the trend data produced by this service has shown a consistent relationship
with the actual number of flu reports collected by the US Centers for Disease Control and Prevention (CDC), often identifying
increasesin flu cases weeks in advance of CDC records. However, contrary to popular belief, Google Flu Trendsis not an early
epidemic detection system. Instead, it is designed as a baseline indicator of the trend, or changes, in the number of disease cases.

Objective: To evaluate whether these trends can be used as a basis for an early warning system for epidemics.

Methods: We present the first detailed algorithmic analysis of how Google Flu Trends can be used as a basis for building a
fully automated system for early warning of epidemicsin advance of methods used by the CDC. Based on our work, we present
anovel early epidemic detection system, called FluBreaks (dritte.org/flubreaks), based on Google Flu Trends data. We compared
the accuracy and practicality of three types of algorithms: normal distribution algorithms, Poisson distribution algorithms, and
negative binomial distribution algorithms. We explored the relative merits of these methods, and related our findings to changes
in Internet penetration and population size for the regions in Google Flu Trends providing data.

Results: Across our performance metrics of percentage true-positives (RTP), percentage false-positives (RFP), percentage
overlap (OT), and percentage early alarms (EA), Poisson- and negative binomial-based al gorithms performed better in all except
RFP. Poisson-based algorithms had average values of 99%, 28%, 71%, and 76% for RTP, RFP, OT, and EA, respectively, whereas
negative binomial-based algorithms had average values of 97.8%, 17.8%, 60%, and 55% for RTP, RFP, OT, and EA, respectively.
Moreover, the EA was also affected by the region’s population size. Regions with larger popul ations (regions 4 and 6) had higher
values of EA than region 10 (which had the smallest population) for negative binomial- and Poisson-based algorithms. The
difference was 12.5% and 13.5% on average in negative binomial- and Poisson-based algorithms, respectively.

Conclusions: We present the first detailed comparative analysis of popular early epidemic detection algorithms on Google Flu
Trends data. We note that realizing this opportunity requires moving beyond the cumulative sum and historical limits method-based
normal distribution approaches, traditionally employed by the CDC, to negative binomial- and Poisson-based algorithms to deal
with potentially noisy search query data from regions with varying population and Internet penetrations. Based on our work, we
have developed FluBreaks, an early warning system for flu epidemics using Google Flu Trends.

(J Med I nternet Res 2012;14(5):125) doi: 10.2196/jmir.2102
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Introduction

Infodemiology introduced the use of nontraditional data sources
for the detection of diseasetrends and outbreaks[1]. These data
sourcesinclude search queries, social media, Web articles, and
blogs posts, which are now being used for real-time disease
surveillance[1-4]. Intermsof search queriesasasource, interest
in using these to predict epidemics has been growing recently
[5-8]. Most notably, the Google Flu Trends [9] service was
launched in 2008 as a way to track changes in the volume of
online search queries related to flu-like symptoms [5]. Google
Flu Trends provides search query trend data that are real-time
and reported on a daily basis, and have been shown to predict
the actual cases of a disease such asflu at least 2 weeks ahead
of the US Centers for Disease Control and Prevention (CDC).

In the absence of other real-time disease surveillance
mechanisms, services such as Google Flu Trends are vitally
important for the early detection of epidemics. Existing research
on using Google Flu Trendsfor epidemic detection hasfocused
on addressing this need by collecting datarelated to the volume
of queries for disease symptoms. This work demonstrates that
Google search query trends closely follow the actual disease
cases reported by the CDC. While these results provide strong
support for the potential use of Google Flu Trends data as a
basis for an early warning system for epidemics, existing
research needs to be advanced along two essential directionsto
realize this opportunity. First, there is a need to rigorously
explore and evolve algorithms for higher-level inference from
the Google Flu Trends data that can generate alerts at early
stages of epidemics. In particular, the ability of existing
approaches to collect raw search volume data needs to be
supplemented with computational intelligenceto tranglate these
data into actionable information. Second, there is also a need
to develop a more detailed appreciation of how changes in
population size and Internet penetration affect the ability of a
system based on Google Flu Trends data to provide accurate
and actionable information.

In this study, we aimed to provide new insights related to these
opportunities. We built upon Google Flu Trends data and
compared the accuracy and practicality of widely used
algorithms for early epidemic detection. These algorithms are
classified into three categories based on the type of data
distribution they expect. The classifications in question are
normal distribution algorithms, Poisson distribution algorithms,
and negative binomial distribution agorithms. For normal
distribution algorithms, we used cumulative sum (CUSUM)
[10-12], the historical limits method (HLM) [10,13], and
historical CUSUM (HCusum) [14,15]. For Poisson distribution
algorithms, we used Poisson outbreak detection (POD) [16],
SaT Scan[17], and Poisson CUSUM (PSC) [18,19]. For negative
binomial distribution algorithms, we used negative binomial
CUSUM (NBC) [20,21] and historical NBC. Some of these
algorithms have already been compared on Ross River disease
data[22]. Our choice of some of thea gorithms (CUSUM, HLM,
POD, SaT Scan, and NBC) and parameters was also based on
this work [22]. However, our work performed the comparison
on Google Flu Trends data. We quantitatively compared the
accuracy, specificity, and sensitivity of these algorithms, aswell
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as the impact of leveraging information in baseline training
periods, seasonal changes, population sizes, and Internet
penetrations, on their suitability for detecting epidemics.

Methods

Data Sources

Google Flu Trends

Traditional disease surveillance networks such asthe CDC take
up to 2 weeks to collect, process, and report disease cases
registered at health centers [23].

Google Flu Trends [9], on the other hand, provides near
real-time data on disease cases by benefiting from the likelihood
that many patients with flu symptoms search online for their
symptoms and remedies before visiting a doctor.

Google Flu Trends compares the popularity of the 50 million
most common Google search queriesin the United States with
flu-likeillnessratesreported by the CDC’s national surveillance
program. The Flu Trends data are derived from a pool of 45
search terms that relate to symptoms, remedies, and
complications of flu and generate atrend that closely correlates
with CDC data on influenza-like illnesses.

In our experiments, we used Google Flu Trends data from the
9 years between 2003 and 2011.

CDC's Qutpatient IlIness Surveillance

Information on patient visits to health care providers in the
United States for influenza-like illnessis collected through the
Outpatient Influenza-like llIness Surveillance Network (ILINet).
ILINet consists of more than 3000 health care providersin all
50 states, reporting over 25 million patient visits each year.
Each week, approximately 1800 outpatient care sites around
the United States report data to the CDC on the total number
of patients seen and the number of those patients with
influenza-likeillnesses. For thissystem, aninfluenza-likeillness
is defined as fever (temperature of 100°F [37.8°C] or greater)
and a cough or a sore throat in the absence of a known cause
other than influenza. Sites with electronic records use an
equivalent definition as determined by state public health
authorities. The percentage of patient visits to health care
providers for influenza-like illnesses reported each week is
weighted on the basis of a state’s population. This percentage
is compared each week with the national baseline of 2.5%. The
baseline is the mean percentage of patient visits for
influenza-like illnesses during noninfluenza weeks for the
previous three seasons plus 2 standard deviations [24].

In our experiments, much like Google Flu Trends data, we used
CDC influenzarlikeillness datafrom the 9 years between 2003
and 2011. Though the CDC has missing data in the nonflu
season between 2009 and 2010, we believe this had aminimal
effect on our quantitative comparison.

Outbreak

For determining periods of outbreaks, the starting pointsin the
time and the duration, we consulted two epidemiologists from
different ingtitutes. The first was from the Institute of Public
Hedlth, Lahore, Pakistan (responsible for informing the
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provincial health ministry about disease outbreaks) and the
second wasfrom Quaid-e-Azam Medical College, Bahawalpur,
Pakistan. These original outbreaks were marked on CDC
influenza-like illness data [23].

Outbreak Detection Algorithms

The early epidemic detection algorithms that we have used are
divided into three categories, based on the expected distribution
indata: (1) normal distribution algorithms: these expect normal
distribution in the data, (2) Poisson distribution algorithms:
these expect a Poisson distribution, and (3) negative binomial
distribution agorithms: these expect a negative binomial
distribution.

Normal Distribution Algorithms

The agorithms classified in this category are the Early
Aberration Reporting System (EARS) algorithm (CUSUM),
HLM, and HCusum.

Early Aberration Reporting System Algorithms

EARS was devel oped and used by the CDC. EARS comprises
three syndromic surveillance early event detection methods
caled C1, C2, and C3[11], which are the Shewhart variations
of the CUSUM method. These methods use a moving average
and standard deviation to standardize the number of occurrences
inthe historical data. In our analysis, C1 used the 4 weeks prior
to the current week of observation for calculating the average
and standard deviation. The value of average and standard
deviation is used to determine the C1 score (Figure 1, parts a,
b, and c). C2issimilar to C1 but used the 4 weeks after a 1-week
lag. It means that it used week 2 to week 5 for calculating the
average and standard deviation (Figure 1, partsd, e, and f). C3
used the C2 score for the previous 3 weeks to calculate the C3
score, as shown in Figure 1 (part g).

The C1, C2, and C3 EARS algorithms require a baseline
(training period) and cut-off (threshold) as parameters. In our
experiments, we used both 4 weeks and 8 weeks asthe baseline.
A shorter training period (baseline) has been shown to insulate
CUSUM from seasonal changes[15]. For each of these baseline
periods, we compared the algorithms for four cut-off values: 2,
4, 6, and 8. This means that we declared an outbreak if the
observed value exceeded the mean value more than a standard
deviation of 3, 5, 7, and 9, respectively. A higher cut-off point
makes the algorithm less responsive to transient changesin the
rate of occurrence of disease cases. Inour analysis, we excluded
C1 with cut-offs of 6 and 8 for both baselines because it rarely
raised an outbreak alarm for the 9 years of data.

Since CUSUM uses mean and standard deviation for raising
alarms, itisbest for outbreakswith respect to normal distribution
of data. It meansthat the algorithmisvery sensitiveto asudden
rise, which generates an early alarm. In addition, it expects a
constant rise in data for an outbreak to continue because the
start of arise becomes part of historical data, consequently also
raising the mean and standard deviation for the algorithm.
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Figurel. Early Aberration Reporting System (EARS) agorithm equations.
C; = cumulative sum (CUSUM) score of C1 algorithm, C, = CUSUM

score of C2 agorithm, C3 = CUSUM score of C3 algorithm, sigma =
standard deviation, X-bar = mean number of cases, X, = number of cases

in current time interval. Subscriptsrefer to a specific variable being linked
to either of the three algorithms.
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Historical Limits Method

The CUSUM methods used in EARS do not account for
seasonality by design; however, the HLM incorporates historical
data. INnHLM an outbreak issignaled when theidentity in Figure
2istrue.

In the HLM, the system determines the expected value of a
week by (1) using 3 consecutive weeks for every year in the
historical data, which isthe current week, the preceding week,
and the subsequent week (entitled HLM-3), and (2) using 5
consecutive weeks for every year, in the past years: the current
week, the preceding 2 weeks, and the subsequent 2 weeks
(HLM-5) in the historical data (Figure 3).

The above two variations (HLM-3, which uses 15 baseline
points, and HLM-5, which uses 25 basdline points) are
recommended by Pelecanos et al [22].

We used both HLM-3 and HLM-5, in which the training period
comprised 5 years, starting from 2003 and ending in 2008. For
determining outbreaks within the training period, we removed
1 year at atime from the timeline between 2003 and 2008 (both
years inclusive). Then we assumed that the remaining years
were consecutive and determined outbreaks during the omitted
year by using the remaining 4 years. This process was repeated
for every year of the training period.

Just like EARS, HLM runs on the mean and standard deviation
of the data. Therefore, the definition of outbreak isto expect a
normal distribution and to mark any outlier, according to normal
distribution, as an outbreak.
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Figure 2. Historical limits method (HLM) equation. Sigma = standard
deviation, X = number of reported cases in the current period, X-bar =
mean.

T 2
% b4

Figure 3. Historical dataof the historical limits methods (HLM). HLM-3
= 3 consecutive weeksin the historical data, HLM-5 = 5 consecutive weeks
in the historical data.
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Historical CUSUM

HCusum isaseasonally adjusted CUSUM [15]. It considersthe
same period during previousyears before creating an alert. This
ignoresthe regular trend of risesin count data and signals only
when an anomaly happens. Hence, the baseline data of our
calculation was the patient count for the same week number
during the preceding 5 years. The mean (X-bar) givesareference
value of what an expected count will be. Sigmagivesaninsight
into how much variation there has been in the values used to
calculate the expected value [14] (Figure 4, parts aand b).

An outbreak is declared if the identity in (c) istrue.

Figure 4. Historical cumulative sum (HCUSUM) equations. Sigma =
standard deviation, X, = number of cases in current time interval, X-bar
= mean number of cases. N = 5, as the baseline period is the preceding 5
years.
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Poisson Distribution Algorithms

The algorithms classified in this category are POD, SaT Scan,
and PSC.
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Poisson Outbreak Detection M ethod

The POD method assumes that the number of cases follow a
Poisson distribution. The POD method [16] uses 10 years of
historical data for calculating the incidence rate of a disease.
This 10-year period is used for accommodating high variability
and skewed distribution of the seasonal incidence rates. To
accommodate variability in the popul ation of the variousregions,
if the population of a certain region islessthan 2500, the crude
incidence rate is used for determining outbreaks. If the
population size is larger than 2500, then the crude incidence
rate is used if either the maximum number of notificationsis
less than 5 or the crude incidence rate and trimmed incidence
rate differ by less than 20%. (Trimmed incidence rate is
calculated by omitting the years with the maximum or minimum
number of cases). Otherwise, the median incidencerateis used.
An outbreak is considered if the chance of the actual number
of cases occurring was|essthan 1%. For POD, ayear isdivided
into seasons (winter, spring, summer, and autumn) and the IRs
are calculated for each season rather than the whole year. This
is how POD caters for seasonality. Since it is Poisson-based
algorithm, it isthe best fit when the outbreak data's variance to
mean ratio (VMR) equals 1. This value of VMR implies that
the data follow a Poisson distribution.

We followed certain suggestions from Pelecanos et a [22] and
increased the percentage chance from 1% to 5%. Thisisbecause
we did not have 10 years worth of historical datato train the
system. Therefore, this change in percentage helped reduce the
sensitivity of the algorithm. We used the first 5 years as a
training period and then added every subsequent year for further
outbreak detection.

Purely Temporal SaT Scan

The SaTScan agorithm can be used for spatial analysis,
temporal analysis, and spatiotemporal analysis. We used only
the temporal analysis for our outbreak detection, since spatial
mapping is already fixed to a CDC-defined region. We used a
Poisson permutation, which works best for data following a
Poisson distribution. This is the case when the data’'s VMR is
equal to 1.

Temporal SaTScan creates 1-dimensional clusters by dliding
and scaling a window within an interval of 60 days. We relied
on the Poisson permutation to determine the clusters with the
highest likelihood ratio.

The equation (Figure 5) calculates the log likelihood ratio for
the selection of the cluster.

Once we had the best cluster within an interval, the algorithm
calculated the P value of the cluster using Monte Carlo testing.
A P value less than .001 determines, with high significance,
that there is an outbreak in the cluster.

SaT Scan does not accommodate seasonality. Therefore, to adjust
SaT Scan for seasonality we scaled the population size of the
region under analysis on a weekly basis. SaTScan uses
population size as one of the parameters, so for every week the
population is scaled. The factor for scaling the population size
isdependent on theincidence rate for each week and the annual
population: populationi = annual population * (incidence rate
for week i / total incidencerate), where populationi isthe scaled
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population for a particular week, annual population is the
population of the year under observation, theincidencerate for
week i is the average incidence rate of a particular week over
the past years, and the total incidence rate is the average of
incidence rates for all weeks through the year.

Moreover, as CDC and Google data are reported on a weekly
cycle, we parameterized SaT Scan on a weekly time unit. We
set the P value cut-off at .001 (to avoid detecting smaller clusters
in responseto seasona changes) and set the number of iterations
to 15 (since our data comprised 8 flu seasons). To detect a new
cluster in each iteration, we set the iterative scan to adjust for
more likely clusters. We did not change the default value of the
maximum Monte Carlo replication (999).

Figure 5. SaTScan equation. C = total number of cases, C, = observed
number of casesinwindow z, LLR =likelihood ratio, n, = expected number
of cases or population in window z.

wae) = (&) (E22) "

C—n,

Poisson CUSUM

PSC is an algorithm that detects the anomalies efficiently in
data that follow a Poisson distribution [18,19]. It tests a null
hypothesisthat the current valueisin control and the alternative
hypothesis that the value is out of control. As a Poisson
distribution can be defined by only one parameter (mean), the
reference valuesfor both hypotheses aretaken asthe mean. The
reference for the null hypothesis is the average value (X ;-bar)
of the data in the baseline window. The baseline window isthe
period of the past 7 weeks from the current week of analysis,
with a 1-week guard band in between. For the alternative
hypothesis, the mean value (X 4-bar) is the sum of the average
and 2 times the standard deviation of the baseline period.
(X -bar) and (X 4-bar) are used in calculating k* of the PSC, as
shownin Figure 6 (part &), which al so showsthe equations used
to calculate CUSUM (parts b and c).

An outbreak is signaled when the computed CUSUM score is
higher than the threshold h. The threshold his equal to t * k
[19]. We did our analysiswitht=1andt=1.5.

Figure 6. Poisson cumulative sum (CUSUM) equations. k = reference
value, S, = CUSUM score, X,, = number of casesin current time interval,

X-barg = null hypotheses mean, X-barq = alternative hypotheses mean, +
superscript refers to values always being positive.

r__ Xa— X, (a)
In(X,) —In(X,)
5;=0 (b)

57 =max(0,57, + X, ~ k*) (c)

Negative Binomial Distribution Algorithms
This category comprises NBC and historical NBC.
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Negative Binomial CUSUM

Static Thresholds

We selected NBC [20,21] because of its property of handling
inaccuracies due to overdispersion in data. Overdispersion in
data causes VMR to be higher than 1. This generally happens
during seasonal increase. Two parameters, (r) and (c,), are used
to describe negative binomial distribution. Equationsin Figure
7 (parts a and b) are used to determine the value of these

parameters based on mean (X-bar) and variance (sigma?), which
are derived from the baseline period. The decision interval is
given by equationsin Figure 7 (partsc, d, and €) through looking
for changes in ¢ from an in-control ¢, to an out-of-control c;,

where ¢, > ¢y [20].

The out-of-control level ¢, is determined by adding 2 times the
standard deviation of the baseline period to the mean of the
baseline. We kept a baseline interval of 7 weeks and a guard
band of 1 week. The guard band prevents the most recent data
from being included in baseline calculations. Therefore, the
baseline period and current week will have agap of 1 week as
aguard band. The CUSUM scoreiscompared with the threshold

value h. An outbreak is declared if the CUSUM score (S,,) >

h. The results were calculated using static cut-off (threshold)
values of 8 and 15 [22].

Figure 7. Negative binomial cumulative sum (CUSUM) equations. k =
reference value, (r,c) = parameters of negative binomial distribution, S, =
CUSUM score, sigma=standard deviation, X, = humber of casesin current

timeinterval, X-bar = mean number of cases, + superscript refersto values
always being positive.

Cy= X/(c*— %) (a)
r=X("-% (b)
5,=0 (c)

St =max(0,S}_, +X,— k%) (d)
Infeo(1+ e3)/ey(14 ¢p)] (e)

kT =

T T[(1+ co)/(1+ )]

Variable Thresholds

NBC with static threshold, although it catches the longevity of
the outbreak, is sensitive in raising early alarms. To cater for
this sensitivity we introduce variable thresholds for NBC. A
new parameter, hv, is calculated, which is used as the threshold
for the CUSUM score. The calculation of the rest of the
parameters is based on equations in Figure 7. The variable
threshold hv is calculated by the equation hv = t * k, wheretis
a constant. We performed our analysis with values of t of both
1 and 1.5. Involving k in the threshold calculation changes the
cut-off valueswith thevariation in the count data of the baseline
window. This reduces the sensitivity of the CUSUM [19].
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Historical Negative Binomial CUSUM
Historical NBC is a seasonaly adjusted negative binomial
CUSUM [20,21]. It calculates ¢, r, and K'using equations in

Figure 7 (parts a, b, and e, respectively). The baseline data are
patient case counts of the current period during the past 5 years.

The calculation of mean (X-bar) and variance (sigma?) is based
on the given baseline period of the past years. The CUSUM
score is given by equation shown in Figure 8.

An outbreak is declared if S, > h, where h is the maximum
limit for the results to remain in atolerable state. We used h =
15[18,22] for our analysis. Asan outbreak can exist onthevery
first calculation, generally a shorter period of 5 yearsisused as
abaseline [18,19,22].

Figure8. Historical negative binomia cumulative sum (CUSUM) equation.
k =referencevalue, S,,= CUSUM score, X, = the case count of the current

week, + superscript refers to values always being positive.

5 =max(0,X, — k¥)

Performance Metrics

To understand how Google Flu Trends data can be used to build
an early epidemic detection system, we compared the results of
24 variants of 8 base agorithms (from three categories of
algorithms) across three regions in the United States. To the
best of our knowledge, this paper presentsthe first comparative
analysisof epidemic detection algorithmsfor Google Flu Trends
data

For our base algorithms, we used EARS CUSUM, HCusum,
HLM, POD, SaTScan, PSC, NBC, and HNBC. The
characteristics of these algorithms afford a degree of diversity
in our analysis:. EARS CUSUM and NBC were designed for
rapid detection of outbreaks; HCusum, HNBC, HLM, and POD
incorporate seasonal changes but require a substantial training
period; and SaTScan requires minimal training and offers
flexibility in detecting statistically significant disease clusters.

We chosethetarget regions, asdivided by the CDC, to compare
the sensitivity of the various algorithms to population size and
Internet penetration. Table 1 shows the population size and
I nternet penetration across HHS regions used in our experiments.
Figure 9 maps the regions to US states. We calculated the
population of each region by adding the populations of the states
in that region. The population in 2009 was used for this
calculation [25]. Internet use was taken from a report of the
Current Population Survey of Internet Use 2009, published by
the Nationa Telecommunications and Information
Administration [26] and in the 2009 census published by the
US Census Bureau [27].

For our comparison with respect to population size, we focused
on region 4 (with thelargest population) and region 10 (smallest
population). For evaluating the impact of Internet penetration,
wefocused on region 6 (lowest Internet penetration) and region
10 (highest Internet penetration). Results from region 10 are of
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particular interest, sinceit hasthe lowest popul ation and highest
Internet penetration. We expect that the results from region 10
could serve as a benchmark of how accurately Google Flu
Trends data can be used as a basis for detecting epidemics.
Furthermore, the wesather in regions 4 and 6 was similar but
very different from that in region 10.

In our analysis, we evaluated each algorithm by comparing its
results using Google Flu Trends data with the disease cases
reported by CDC. We compared the performance of the
algorithms on the following key metrics.

Percentage True-Positives

Percentage true-positives (RTP) measures the percentage of
time an epidemic signaled in the CDC data is also detected by
thetarget algorithm on Google Flu Trends data. This percentage
iscalculated by the number of outbreak intervalswhen the signal
was raised divided by the total number of outbreak intervals,
with the result multiplied by 100.

Per centage False-Positives

Percentage false-positives (RFP) measures the percentage of
time an epidemic not signaled in the CDC data is detected as
an epidemic by thetarget algorithm on Google Flu Trends data.
This percentage is calculated by the number of nonoutbreak
weeks when asignal was raised divided by the total number of
weeks with no outbreak, with the result multiplied by 100.

Percentage Overlap Time

Percentage overlap (OT) measures the percentage of the time
an epidemic detected by an algorithm overlapswith the epidemic
signaledin CDC data. Any part of asignal that does not overlap
with the original outbreak is not considered in OT.

Percentage Early Alarms

Percentage early alarms (EA) measures the percentage of time
an algorithm raises an alarm on Google Flu Trends beforeit is
signaled as an epidemic by the CDC data. The early alarm period
islimited to the 2 weeks before the start of the original outbreak.
Part of a signal starting before this 2-week time period is
considered false-positive.

These four metrics capture different aspects of the detection
algorithms. RTP measures the sensitivity of an algorithm to
outbreaks. At the same time, an overly sensitive algorithm
generates a higher number of RFPs.

The average overlap time captures the stability of an algorithm
to transient changesin the rate of disease cases. Algorithmsthat
signal the entire period of an epidemic are more desirable than
those that raise short, sporadic signals.

Finally, algorithms that signal an epidemic ahead of other
algorithms are more suited for early epidemic detection.
However, this metric must be viewed in conjunction with an
algorithm’s RFP to discount algorithms that generate spurious
signals. For our analysis, we counted asignal asan early alarm
if its fell within a 2-week window preceding the signal in the
CDC data, so long as it was not a continuation of a previous
alarm.
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Table 1. Population and percentage Internet use by US Department of Health and Human Services (HHS) region.

HHS Population % Internet States

region (2009 census) use

1 14,412,684 74.07 CT, ME, MA, NH, RI, VT
2 28,224,114 70.20 NJ, NY

3 29,479,361 69.30 DE, DC, MD, PA, VA, WV
4 60,088,178 63.25 AL, FL, GA, KY, MS,NC, SC, TN
5 51,745,410 7142 IL, IN, MI, MN, OH, WI

6 37,860,549 61.56 AR, LA,NM, OK, TX

7 31,840,178 7168 IA, KS, MO, NE

8 20,802,785 72.13 CO, MT, ND, SD, UT, WY
9 46,453,010 67.95 AZ,CA, HI, NV

10 6,691,325 76.93 AK, ID, OR, WA

Figure9. US Department of Health and Human Services regions.
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Results

Figure 10, Figure 11, and Figure 12 compare al of the
algorithmsin our study on a9-year timescal e between 2003 and
2011. Details for these figures are presented in Multimedia
Appendix 1, MultimediaAppendix 2, and Multimedia A ppendix
3, which compare the agorithms according to our four
comparison metrics. RTP, RFP, OT, and EA across our three
target regions [12,13,22].

In each Multimedia Appendix thereis a sorted column (overall
position of algorithm). In this column the algorithms are sorted

http://www.jmir.org/2012/5/e125/

Boston

s

Puerto Rico

Fh

¥irgin Islands

based on their median acrossthe four performance metrics. We
chosethe median to cater for extreme valuesin the performance
metrics.

Although we have divided the algorithms into three categories,
namely Poisson, negative binomial, and normal distribution
algorithms, another subcategory called historical algorithms
surfaced during our analysis. Thisis a subset of both negative
binomial and normal distribution categories, asit hasalgorithms
in both. HNBC from the negative binomia and HLM, and
HCusum from the normal distribution showed a similar pattern
of results across the four performance metrics. Therefore, for
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the remainder of the discussion, we will add the classification
of historical algorithm and analyze its results independently.

In Table 2, for the first performance metric, RTR, all the
categories had high average values (96.4%, 99.0%, and 98.8%
for normal, NBC, and Poisson distribution algorithms,
respectively), with the only exception being the historical
algorithms (64%). Moreover, among the algorithms showing a
high RTP percentage, there were no significant differences
between the values.

In the second performance metric, RFP, values go the other way
round, with the historical algorithms showing remarkably
optimal values (average 3.3%, where lower is better), whereas
normal, NBC, and Poisson distribution algorithms show
percentages of 11.4%, 28.3%, and 17.5%, respectively. Clearly
thehistorical algorithmsand normal distribution algorithmsled
in this metric.

In the third metric, OT, negative binomial distribution
algorithms led, with an OT of 71.3%, followed by Poisson
distribution (60.3%), historical algorithms (30.8%), and normal
distribution algorithms (16.4%). In thismetric, NBC and Poisson
distribution led by a major difference, ahead of historical and
normal distribution algorithms.

Inthefourth and last metric, EA, negative binomial, on average,
led with an EA value of 75.8%, followed by Poisson distribution
(55.1%), normal distribution (36.8%) and historical algorithms
(22.3%).

For some performance metrics, certain categories did not
perform consistently, and val ues of these categories varied over
alarge range. In normal distribution algorithms, the values of
EA varied from 0% to 75%. In Poisson distribution algorithms,
EA varied from 13% to 75%. Therefore, in these cases the
average value of that particular metric could not be considered
representative, and we needed to examine the algorithms (or
variations of algorithms) for suitability.

Pervaiz et d

When welooked at EA valuesin normal distribution algorithms,
the C3 variations of EARS showed a high EA value for only
one region. Otherwise, the next best values were barely in the
optimal range. Moreover, the OT of C3 at best was 34, which
isvery low and made this algorithm not suitable.

In case of the EA valuesin Poisson distributions, the SaT Scan
algorithm pulled the average of Poisson distribution algorithms
downin EA. Therefore, if we considered the average EA value
of Poisson distribution algorithms without SaT Scan, it actually
rose from 55.1 to 66.7.

Overall, negative binomial and Poisson distribution algorithms
performed much better than normal distribution agorithms.
This is mainly because of the data distribution that these
algorithms expect. The VMR of seasonal influenza-like illness
datawas greater than 1, most of thetime (Figure 13). Therefore,
the data followed a negative binomia distribution [28].
Moreover, the Poisson distribution was an approximation of
the negative binomial distribution [29,30]. Therefore, the overall
percentages of both Poi sson-based and negative binomial -based
algorithms turned out to be high.

Historical agorithms performed poorly because they considered
data during the same period in past yearsto declare the outbreak.
They did not consider the distribution of data during the current
year. This made them robust in terms of false-positives, but the
performance across other metrics lagged by a substantial
difference.

Furthermore, to understand the impact of population variation
and change in Internet penetration across regions, we picked
the top two algorithms from the negative binomial distribution
and Poisson distribution algorithms and applied them to all the
regions (instead of just three). Table 3, Table 4, Table 5, and
Table 6 present the results of the algorithms applied.

Theresult of thisanalysis showed that in regions of high Internet
penetration the RFP and OT were high.

Table 2. Average percentages of various performance metrics for various categories of algorithms.

Metric Normal Negative Poisson Historical
binomial

RTP? 96.4 99.0 98.8 64.0

RFPP 11.4 28.3 175 33

or¢ 16.4 71.3 60.3 30.8

EAC 36.8 75.8 55.1 223

@ Percentage true-positives.
b Percentage fal se-positives.
¢ Percentage overlap time.

d Percentage early alarms.
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Table 3. Result of negative binomial cumulative sum (cut-off = 15), for all performance metrics across all Department of Health and Human Services
(HHS) regions of the United States.

HHS region RTP? RFPP ore EAd
1 100 45 98 87.5
2 100 40 85 7.7
3 100 40 88 87.5
4 100 30 81 88
5 100 40 95 87.5
6 100 40 76 88
7 100 40 95 87.5
8 87.5 50 83 75
9 90 40 71 80
10 100 40 82 71

@ percentage true-positives.

b Percentage fal se-positives.

¢ Percentage overlap time.
d Percentage early alarms.

Table 4. Result of negative binomial cumulative sum (threshold = 1 * k) for all performance metrics across al Department of Health and Human
Services (HHS) regions of the United States.

HHS region RTP? RFP? ore¢ EAd
1 100 35 87 87.5
2 100 27 74 66.7
3 100 20 81 75
4 100 20 70 75
5 100 30 86 75
6 100 20 63 75
7 100 30 87 75
8 87.5 40 71 75
9 90 30 64 70
10 100 30 68 71

@ Percentage true-positives.
b Percentage fal se-positives.
¢ Percentage overlap time.

d Percentage early alarms.
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Table5. Result of Poisson cumulative sum (threshold = 1 * k) for all performance metrics across all Department of Health and Human Services (HHS)

regions of the United States.
HHS region RTP? RFPP ore EAd
1 100 35 83 87.5
2 100 27 71 66.7
3 100 20 80 75
4 100 20 70 75
5 100 30 84 75
6 100 20 62 75
7 100 30 84 75
8 87.5 40 67 75
9 90 30 64 70
10 100 30 68 57

@ percentage true-positives.

b Percentage fal se-positives.

¢ Percentage overlap time.
d Percentage early alarms.

Table 6. Result of Poisson outbreak detection for all performance metrics across all Department of Health and Human Services (HHS) regions of the

United States.
HHS region RTP? RFP? ore¢ EAd
1 100 35 77 33
2 100 20 70 40
3 100 30 69 50
4 100 20 58 75
5 100 40 72 50
6 100 20 50 75
7 100 30 72 75
8 87.5 30 74 75
9 90 20 57 40
10 100 20 68 57

@ Percentage true-positives.

b Percentage fal se-positives.

¢ Percentage overlap time.

d Percentage early alarms.
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Figure 10. US Department of Health and Human Services region 4. The x-axis plots the Google Flu Trends and Centers for Disease Control and
Prevention (CDC) data. The horizontal bars indicate where each method detected an epidemic. Cut indicates the cut-off point (more is less sensitive)
and b indicates baseline data (training window). Thethick horizontal bars at the bottom show the actual outbreak. HCusum = historical cumulative sum,
HLM = historical limits method, HNBC = historical negative binomia cumulative sum, ILI = influenza-likeillnesses, k = reference value for threshold,
NBC = negative binomia cumulative sum, POD = Poisson outbreak detection, PSC = Poisson cumulative sum.
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Figure 11. US Department of Health and Human Services region 6. The x-axis plots the Google Flu Trends and Centers for Disease Control and
Prevention (CDC) data. The horizontal bars indicate where each method detected an epidemic. Cut indicates cut-off point (more is less sensitive) and
b indicates baseline data (training window). The thick horizontal bar at the bottom shows the actual outbreak. HCusum = historical cumulative sum,
HLM = historical limits method, HNBC = historical negative binomia cumulative sum, ILI = influenza-likeillnesses, k = reference value for threshold,
NBC = negative binomia cumulative sum, POD = Poisson outbreak detection, PSC = Poisson cumulative sum.
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Figure 12. US Department of Health and Human Services region 10. The x-axis plots the Google Flu Trends and Centers for Disease Control and
Prevention (CDC) data. The horizontal bars indicate where each method detected an epidemic. Cut indicates cut-off point (more is less sensitive) and
b indicates baseline data (training window). The thick horizontal bar at the bottom shows actual outbreak. HCusum = historical cumulative sum, HLM
= historical limits method, HNBC = historical negative binomial cumulative sum, ILI = influenza-likeillnesses, k = reference value for threshold, NBC
= negative binomial cumulative sum, POD = Poisson outbreak detection, PSC = Poisson cumulative sum.
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Discussion

In this study, we augmented the capabilities of Google Flu
Trends by evaluating various algorithms to trandlate the raw
search query volume produced by this service into actionable
alerts. We focused, in particular, on leveraging the ability of
Google Flu Trends to provide a near real-time alternative to
conventional disease surveillance networks and to explore the
practicality of building an early epidemic detection system using
these data. This paper presents the first detailed comparative
analysis of popular early epidemic detection algorithms on
Google Flu Trends. We explored the relative merits of these
methods and considered the effects of changing Internet
preval ence and population sizes on the ability of these methods
to predict epidemics. In these evaluations, we drew upon data
collected by the CDC and assessed the ability of each algorithm
within a consistent experimental framework to predict changes
in measured CDC case frequencies from the Internet search
guery volume.

Our analysis showed that adding a layer of computational
intelligence to Google Flu Trends data provides the opportunity
for areliable early epidemic detection system that can predict
disease outbreaks with high accuracy in advance of the existing
systems used by the CDC. However, we note that realizing this
opportunity requires moving beyond the CUSUM- and
HLM-based normal distribution approaches traditionally
employed by the CDC. In particular, while we did not find a
single best method to apply to Google Flu Trends data, the
results of our study strongly support negative binomial- and
Poi sson-based algorithms being more useful when dealing with
potentially noisy search query data from regions with varying
Internet penetrations. For such data, we found that normal
distribution algorithms did not perform as well as the negative
binomial and Poisson distribution algorithms.

Furthermore, our analysis showed that the patient data of a
disease follows different distributions throughout the year.
Therefore, when VMR of data is equal to 1, it is ideally
following a Poisson distribution and could be handled by a
Poisson-based algorithm. As the increase in variance raises
VMR above 1, the data become overdispersed. Poisson-based
algorithms can handle this overdispersion, up to a limit [29].
When VMR isvery high, an algorithm is needed that considers
the variance as aparameter and raises alarms accordingly. Since
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negative binomial distribution-based algorithms consider the
variance [29], such agorithms perform better in similar
scenarios. For instance, NBC isaccuratein raising an alarm for
overdispersed count data[29]. To get better results, we propose
an approach, based on the above discussion, of changing the
distribution expectation of an algorithm along with the rise and
fal in VMR. This area should be explored in more depth to
produce algorithmsthat adapt according to the data’ s distribution

type.

Our research is the first attempt of its kind to relate epidemic
prediction using Google Flu Trends datato Internet penetration
and the size of the population being assessed. We believe that
understanding how these factors affect algorithms to predict
epidemics is an integral question for scaling a search
guery-based system to a broad range of geographical regions
and communities. In our investigations, we observed that both
Internet penetration and population size had a definite impact
on agorithm performance. SaTScan performs better when
applied to data from regions with high Internet penetration and
small population size, while POD and NBC achieves better
results when Internet penetration is low and population sizeis
large. CUSUM performsbest in regionswith alarge popul ation.
While the availability of search query data and measured (ie,
CDC) case records restrict our analyses to the United States,
we believe many of these insights may be useful in devel oping
an early epidemic prediction system for other regions, including
communities in the developing world.

In conclusion, we present an early investigation of algorithms
to tranglate data from services such as Google Flu Trends into
a fully automated system for generating aerts when the
likelihood of epidemics is quite high. Our research augments
the ability to detect disease outbreaks at early stages, when
many of the conditionsthat impose an immense burden globally
can betreated with better outcomes and in amore cost-effective
manner. In addition, the ability to respond early to imminent
conditions alows for more proactive restriction of the size of
any potential outbreak. Together, the findings of our study
provide ameansto convert raw data collected over the Internet
into more fine-grained information that can guide effective
policy in countering the spread of diseases.

Based on our work, we have developed FluBreaks
(dritte.org/flubreaks), an early warning system for flu epidemics
using Google Flu Trends.
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Ranking of algorithms in different parameters of evaluation for HSS Region 4 (Highest Population).
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[PDE File (Adobe PDF File), 48KB-Multimedia Appendix 1]

Multimedia Appendix 2
Ranking of algorithmsin different parameters of evaluation for HSS Region 6 (Lowest Percent Internet Use).

[PDE File (Adobe PDF File), 48K B-Multimedia Appendix 2]

Multimedia Appendix 3

Ranking of algorithmsin different parameters of evaluation for HSS Region 10 (Lowest Popul ation and Highest Percent I nternet
Use).
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