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Abstract

Background: There are many benefits to open datasets. However, privacy concerns have hampered the widespread creation of
open health data. There is a dearth of documented methods and case studies for the creation of public-use health data. We describe
a new methodology for creating a longitudinal public health dataset in the context of the Heritage Health Prize (HHP). The HHP
is a global data mining competition to predict, by using claims data, the number of days patients will be hospitalized in a subsequent
year. The winner will be the team or individual with the most accurate model past a threshold accuracy, and will receive a US
$3 million cash prize. HHP began on April 4, 2011, and ends on April 3, 2013.

Objective: To de-identify the claims data used in the HHP competition and ensure that it meets the requirements in the US
Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule.

Methods: We defined a threshold risk consistent with the HIPAA Privacy Rule Safe Harbor standard for disclosing the competition
dataset. Three plausible re-identification attacks that can be executed on these data were identified. For each attack the
re-identification probability was evaluated. If it was deemed too high then a new de-identification algorithm was applied to reduce
the risk to an acceptable level. We performed an actual evaluation of re-identification risk using simulated attacks and matching
experiments to confirm the results of the de-identification and to test sensitivity to assumptions. The main metric used to evaluate
re-identification risk was the probability that a record in the HHP data can be re-identified given an attempted attack.

Results: An evaluation of the de-identified dataset estimated that the probability of re-identifying an individual was .0084,
below the .05 probability threshold specified for the competition. The risk was robust to violations of our initial assumptions.

Conclusions: It was possible to ensure that the probability of re-identification for a large longitudinal dataset was acceptably
low when it was released for a global user community in support of an analytics competition. This is an example of, and
methodology for, achieving open data principles for longitudinal health data.

(J Med Internet Res 2012;14(1):e33) doi: 10.2196/jmir.2001
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Introduction

Creating open data is considered an important goal in the
research community. Open data is said to ensure accountability
in research by allowing others access to researchers’ data and
methods [1-4]. Having research data available to peers and the
public helps to ensure that reported study results are valid and
protects against faulty data [1-8]. Another asset of open data in
research is that it allows researchers to build on the work of
others more efficiently and helps to speed the progress of science
[2,3,5]. To build on previous discoveries, there must be trust in
the validity of prior research. Openness of research methods,
as well as of raw data, facilitates trust between researchers and
with the public [2]. Having research data available to other
researchers allows for secondary analyses that expand the
usefulness of datasets and the resulting knowledge gained
[1,3-5]. Connected to this is the decrease in the burden on
research participants through the reuse of existing research data
and the decrease in the cost of data collection [1,3,5].

Although there is some evidence that sharing raw research data
increases the citation rate of research papers [9], researchers do
have concerns about open data, including the privacy of research
participants, which could prevent them from sharing data
[1,3,4,6,8,10-12]. Research participants put their trust in the
research team to protect their privacy and keep their information
confidential [3,4,8,12,13].

There is a dearth of articles documenting methods for the
creation of open health data that specifically address these
privacy concerns. We provide a case study of de-identifying a
health dataset for public release in the context of the Heritage
Health Prize (HHP).

The Heritage Health Prize
In April 2011 the Heritage Provider Network (HPN), a health
maintenance organization based in California, launched the

largest public health analytics competition to date: the HHP
[14]. The objective of the competition is to construct a model
to predict the number of days a patient will be hospitalized in
the following year, by using the current and previous years’
claims data. The core dataset consists of 3 years of de-identified
HPN data on 113,000 patients. At the time of writing there were
1347 entrants in the competition and close to 10,000 entries.
The patient data are provided to all entrants through a download
on the competition website. The individual or team that develops
the most accurate prediction model past a certain accuracy
threshold after the 2-year competition period gets a US $3
million cash prize, or a $0.5 million prize for the most accurate
model if no entrant beats the accuracy threshold.

The public disclosure of health data for the purposes of attracting
data analysts from around the globe to solve complex problems
or to bring rapid advances to a field is not new. Table 1 [15-18]
summarizes three recent health competitions that made data
publicly available. However, the privacy of patients is an
important consideration when publicly disclosing a large health
dataset accessible with few restrictions. In particular, there is a
risk that patients in the competition dataset can be re-identified
by an adversary. Re-identification can potentially harm these
patients, from social and psychological harm, to financial harm
by affecting their employability or insurability.

In the United States there is no legislative requirement to obtain
patient consent to disclose health information if the data are
deemed de-identified. The Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule provides some
definitions and standards for the de-identification of health data.
Therefore, a credible claim must be made that the data are
indeed de-identified according to one of those standards to allow
their disclosure for the HHP without obtaining patient consent.

Table 1. Recent examples of public releases of health data for the purpose of competitions.

ObjectiveCompetition

Finding markers in the human immunodeficiency DNA sequence that predict a change in the
severity of the infection

Predict HIV Progression [15]

Predicting hospitalization outcomes of transfer and deathINFORMS data mining contest [16]

Developing an application to manage patients with a focus on chronic diseasesPractice Fusion medical research data [17,18]

De-identification of the HHP Data
We describe how the HHP data were de-identified for the
competition to (1) make the data publicly available, and (2)
meet the requirements of the HIPAA Privacy Rule. Only one
previous study explained the methods for de-identifying
public-use health data files; however, it considered risks to
Canadian patients and did not involve longitudinal data [19].
The main objective of the de-identification was to protect the
identity of the patients.

The contributions of this work are (1) a description of how we
measured re-identification risk for the public release of a large
health dataset in the United States (which can be a useful
example for other open government and open data initiatives

and programs in the United States [20]), including the
development of new risk measurement techniques, (2) an
extension of an existing algorithm developed for cross-sectional
data, optimal lattice anonymization, with new methods to
efficiently de-identify longitudinal data, and (3) a description
of an approach for using simulated attacks to evaluate
longitudinal data de-identification algorithms and an illustration
of its use on the HHP dataset. Our results demonstrate that it is
possible to publicly disclose longitudinal health data with strong
guarantees of privacy, as defined in HIPAA. Furthermore, the
methods described here can serve as a template for other open
competitions and the creation of open health datasets.
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Methods

The competition data consist of 3 years’ worth of demographic
and claims data. For year 1 and year 2, the number of days of
hospitalization in the subsequent year is also included. The
claims data represent the predictors, and the number of days of
hospitalization is the outcome. These data are used for training
prediction models. Entrants use the year-3 claims data to predict
the number of days of hospitalization for year 4, and the
competition will be judged on the accuracy of that year-4
prediction. Therefore, entrants download the data for years 1–3,
to predict days of hospitalization for year 4.

Managing the re-identification risk for the competition dataset
consists of a combination of technical and legal measures. These
measures are described in the following section.

Definitions

Quasi-identifiers
Quasi-identifiers are variables that represent the background
knowledge about patients in the competition data that an
adversary could use for re-identification. If an adversary does
not have certain background knowledge, then those variables
cannot be quasi-identifiers. General examples of quasi-identifiers
are sex, date of birth or age, location information (such as zip
codes), language spoken at home, and ethnic origin.

Equivalence Classes
All records that share the same quasi-identifier values are called
an equivalence class. For example, all the records in a dataset
about 17-year-old males admitted on January 1, 2008 are an
equivalence class. Equivalence class sizes for a quasi-identifier
(such as age) could potentially change during de-identification.
For example, there may be 3 records for 17-year-old males
admitted on January 1, 2008. When the age is recoded to a
5-year interval, then there may be 8 records for males between
16 and 20 years old admitted on January 1, 2008. In general
there is a trade-off between the level of detail provided for a
quasi-identifier and the size of the corresponding equivalence

classes, with more detail being associated with smaller
equivalence classes.

Identity Versus Attribute Disclosure
Two kinds of disclosure are of concern. The first occurs when
an adversary can assign an identity to a record in the disclosed
dataset. For example, if the adversary is able to determine that
record number 7 belongs to patient Alice Smith, then this is
called identity disclosure. The second type of disclosure happens
when an adversary learns something new about a patient in the
database without knowing which specific record belongs to that
patient. For example, if all 20-year-old female patients in the
disclosed database who live in a particular county have a
particular diagnosis, then an adversary does not need to know
which record belongs to 20-year-old Alice Smith, if she lives
in that county, to know that she has that particular diagnosis.
This is called attribute disclosure.

All known re-identification attacks of personal information that
have actually occurred have been identity disclosures [21].
Furthermore, the HIPAA Privacy Rule is concerned only with
protecting against identity disclosure. Consequently, identity
disclosure was the primary risk that needed to be addressed.
We therefore focused solely on identity disclosure for the
purpose of de-identification.

Dataset
The claims dataset consists of two tables that include the fields
shown in Table 2 and Table 3 [22,23]. The records in both tables
are linked through the MemberID field. The patients table has
only 1 record per patient. The claims table contains records for
all of the patient claims included in the dataset. Patients have
different numbers of claims over the 3-year period.

The quasi-identifiers included in the dataset (indicated in Table
2 and Table 3) are the variables that we believed could be used
by an adversary for a re-identification attack. The justification
for this selection of quasi-identifiers will become evident below
when we discuss the plausible re-identification attacks that could
be made on these data.

Table 2. Description of the fields in the patients data table.

DescriptionField

Unique identifier for the patientMemberID

Age in years at the time of the first claim in year 1Agea

Patient’s sexSexa

Total number of days the patient was hospitalized in year 2DaysInHospital Y2a

Total number of days the patient was hospitalized in year 3DaysInHospital Y3a

a Quasi-identifier.
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Table 3. Description of the fields for the claims data table.

DescriptionField

Unique identifier for the patientMemberID

Unique identifier for the responsible provider giving careProviderID

Unique identifier for the vendor providing the serviceVendor

Unique identifier for the primary care providerPCP

Indicator of claim year (year 1, year 2, or year 3)Year

Specialty of providerSpecialtya

Place of servicePlaceOfServicea

CPTb code: these codes provide a means to accurately describe medical, surgical, and diagnostic services, are

used for processing claims and for medical review, and are the national coding standard under HIPAAc
CPTCodea

Length of stay in hospitalLOSa

Number of days since first claim computed from the first claim for that patient for each yearDSFCa

Number of days of delay between date of service and date of payment of the claimPayDelay

ICD-9-CMd codeDiagnosisa

a Quasi-identifier.
b Current Procedural Terminology [22].
c Health Insurance Portability and Accountability Act.
dInternational Classification of Diseases, 9th revision, Clinical Modification [23]

Preprocessing of Claims Data
We preprocessed the data to apply some basic de-identification
steps before assessing any quantitative re-identification risk.

Creating Pseudonyms
The MemberID, ProviderID, Vendor, and PCP fields were
converted to irreversible pseudonyms [24], since they would
otherwise be considered direct identifiers. These ID values are
used during the provision of care and therefore are generally
known. Consequently, these direct identifiers could potentially
be exploited for financial gain, and were therefore
pseudonymized. For example, the original IDs could be used
to identify individual providers and the number and type of
procedures that they perform.

Top-Coding
Quantitative values that are considered uncommonly high are
often limited to an upper bound, a procedure called top-coding.
Such extreme values make individuals more unusual (or make
them stand out) in the population and can be revealing by
themselves or used to infer other characteristics about the
patients that should be protected.

A commonly used heuristic for top-coding is to have a cut-off
at the 99.5th percentile [25]. To err on the conservative side,
we top-coded the PayDelay variable and the DaysInHospital
variable at the 99th percentile. Extreme values on PayDelay
could indicate procedures that are more expensive and for which
it would take an unusually long time to pay (and hence the
procedure could be inferred from the PayDelay value). Extreme
values for DaysInHospital could cause patients to stand out
because they have stayed exceedingly long in hospital.

Truncation of Claims
While it is not likely that an adversary would know the exact
number of claims that an individual patient would have, it is
plausible for an adversary to know whether an individual patient
has had an abnormally large number of claims. For example, a
patient may have 300 claims a year and be the only one in the
population with more than 200 claims. Adversaries who know
that their 50-year-old neighbor has had an unusually high
number of hospital procedures could correctly guess that this
extreme outlier is their neighbor.

We therefore truncated the number of claims per patient at the
95th percentile. To decide which claims to truncate we assigned
each claim a score, and deleted claims with the highest scores
from the dataset. A description of the scoring method is provided
in Multimedia Appendix 1.

The truncation of claims was different from the censoring
method that has been described in previous research for
diagnosis codes [26]. The censoring method collapses repeating
codes and then uses suppression to ensure a minimal number
of patients have the same code. In our case we did not collapse
similar claims, and our focus was on full claims that contained
multiple pieces of information (as summarized in Table 3), as
opposed to just diagnosis codes.

Removal of High-Risk Patients and Claims
Patients who were considered to be high risk were removed
from the dataset to avoid the chance that their disease, condition,
or procedure could be inferred from patterns in the data. These
patients had International Classification of Diseases, 9th
revision, clinical modification (ICD-9-CM) or Current
Procedural Terminology (CPT) codes that represent highly
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stigmatized conditions, and conditions that patients who lock
their records (through consent directives) tend to have and want
to conceal—for example, patients with human
immunodeficiency virus infection, those who have had
abortions, and patients with rare and visible diseases and
conditions [27]. For those individuals HPN deemed that the
only acceptable risk of re-identification was zero. The criteria
used to remove patients are listed in Multimedia Appendix 1.

As Multimedia Appendix 1 shows, the patients who were
removed during this step were different on several factors from
the rest of the patient population: (1) their length of stay (LOS)
in hospital tended to be longer, (2) they tended to be older, (3)
the interval between their claims was longer, and (4) they tended
to have more claims. This suggested that they had more serious
chronic conditions than the rest of the population dataset. On
the other factors there was little or no difference.

Suppression of Provider, Vendor, and PCP Identifiers
Providers could have patterns of treatment that make them stand
out. An adversarial analysis by an independent party of a
prerelease version of the HHP dataset noted how information
about providers could potentially be used to predict the hospitals
where procedures were performed (A Narayanan, unpublished
data, 2011). Knowledge of the treating hospital would increase
the risk of re-identification for the patients.

These patterns of treatment consisted of 4 quasi-identifiers: the
place of service, specialty, CPT code, and diagnosis code. For
example, a provider could be the only one with a particular
specialty in a specific place of service who performed
procedures on patients with a particular diagnosis. In cases
where it was estimated from the HHP data that there were fewer
than 20 providers with the same pattern in the HPN system, the
provider ID was suppressed for those records. The choice of 20
is justified below in the section outlining thresholds. The
estimation method used is described elsewhere [28,29]. A
similar process was followed for vendor and primary care
provider IDs.

Facts and Assumptions About Re-identification
Threats
To understand the type of de-identification required to protect
patients, we first had to determine the threats that could exist
for the duration of the competition. The following are the key
facts and assumptions of the threat modeling used:

• Fact: The dataset that was being released for the HHP
consisted of a small sample of all HPN patients.

• Fact: All entrants in the competition had to sign (or click
through) an agreement saying that they would not attempt
to re-identify patients in the dataset, contact patients, or
link the HHP data with other datasets that would add
demographic, socioeconomic, or clinical data about the
patients (where such data could make the risk of
re-identification much higher).

• Assumption: It would not be possible for an adversary to
know whether the record for a particular patient was in the
HHP dataset. If an adversary made a guess, it would be
equal to the sampling fraction. Most patients would
themselves not know whether they were members of HPN,

and therefore the most realistic sampling fraction to use
would be from the population of counties in California
covered by HPN. However, to err on the conservative side,
we assumed that an adversary would know whether a patient
was a member of HPN in our calculations of
re-identification risk.

• Assumption: An adversary would have background
information about only a subset of the claims of a patient
in the dataset. For example, if a patient had 100 claims, we
did not deem it plausible for the adversary to know the exact
information in all of those 100 claims and to use that
information for re-identification purposes. Rather, we
assumed the adversary would have information about only
a subset of these claims. This has previously been referred
to as the power of the adversary, and various methods have
been used to account for power when de-identifying
transactional data [30-32].

These facts and assumptions shaped how we conceptualized
re-identification risk and which kinds of attacks we considered
plausible for this dataset.

Attacks on the Data
We examined plausible attacks on the data as described below,
and for each one we will discuss how we measured and managed
the re-identification risks.

One important distinction to make at the outset pertains to
subcontractors (eg, insurers, laboratories, or pharmacists) and
employees of HPN, versus the entrants. Subcontractors process
patient data during the regular provision of care and will have
a large amount of information about the patients in the
competition that can potentially be used for re-identification.
However, HPN has contracts with these subcontractors and
there are already mechanisms in place to enforce these
agreements. In such a case, reliance on existing legal methods
to protect against re-identification by subcontractors was deemed
sufficient.

On the other hand, entrants in the competition could come from
many countries in the world. Even though entrants had to agree
to a certain set of rules, enforcement of the rules globally poses
a practical challenge.

Therefore, we assumed that an adversary would be one of the
entrants who has obtained the HHP data (1) by registering for
the competition, or (2) through a data leak (deliberate,
accidental, or malicious) from a legitimate entrant. Furthermore,
it would not be prudent to assume that the adversary would
adhere to conditions on other public or semipublic databases to
which they have gained access. In such a case, we needed
technical methods that provide stronger guarantees that the
probability of re-identification is low.

Attack 1: The Nosey Neighbor Adversary
Under this attack, the adversary would be an individual who
(1) would be trying to re-identify a target individual who was
an HPN patient (a specific individual, such as a neighbor or a
famous person) or any individual who was known to the
adversary to be an HPN patient (an arbitrary individual selected
at random), (2) would not know whether the target individual
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was in the dataset, and (3) would have some basic background
information about the target patient in terms of the patient’s
demographics and information about some of the patient’s
claims.

The adversary could be a patient’s neighbor, coworker, relative,
or ex-spouse, or the target individual could be a famous person
whose basic demographics and perhaps some of whose treatment
information would be publicly known. There are known
examples of this kind of attack. In one case a researcher
re-identified the insurance claim transactions of the Governor
of Massachusetts [33]. In another example, a neighbor was
re-identified in a hospital prescription database that was going
to be disclosed to a commercial data broker [34].

Under this type of attack, the risk metric would be the
probability that an individual can be correctly re-identified. The
probability of an individual being re-identified using this attack
is the reciprocal of the equivalence class size in the HPN
member population (from which the competition dataset is
derived) [28].

For any patient in an equivalence class j, the probability of
re-identification was defined as equation 1 (Figure 1), where Fj

is the equivalence class size in the HPN patient population.
Since we did not know which record might be attacked, we used
the record with the highest risk as a risk measure for the whole
file (equation 2, Figure 1).

Figure 1. Equations describing how re-identification risk was measured.

Attack 2: Matching With the Voter Registration List
In California it is possible to obtain the voter registration list
[35]. The voter registration list contains the date of birth and
gender of the voter. We did not include the full date of birth in
the HHP dataset, but we did include a generalization of the date
of birth to a 10-year interval. Even though there are restrictions
on what a California voter registration list can be used for [35],
an adversary could potentially match the HHP dataset with the
voter list to re-identify patients. In such a case, the appropriate
re-identification risk metric would be the proportion of
individuals that could be re-identified in the HHP dataset (this
metric is also known as marketer risk [29]).

It has been shown that managing the risk in equation 2 also
manages marketer risk [29]. And, because the equivalence
classes in the voter registration list are the same size as or larger
than the equivalence classes in the HPN population, if we could
protect against attack 1, then we would automatically protect
against attack 2.

Attack 3: Matching With the State Inpatient Database
In the United States, 48 states collect data on inpatients [36],
and 26 states make their hospital discharge data available
through the Agency for Healthcare Research and Quality
(AHRQ) [37]. These data can be purchased for the purposes of
research or another approved use. These datasets are referred
to as the State Inpatient Database (SID).

An adversary could potentially match the competition dataset
with the SID data to discover something new about the
individuals in the dataset. For example, if an individual were
able to match the HHP records with the SID records, then the
adversary could discover the exact month and year of birth of
patients and their detailed diagnosis codes and procedures, even
if we generalized them in the HHP data release (since these
fields are included in the SID). Furthermore, the SID contains
race information, which could be added to the HHP dataset after
matching. This would provide more detailed information than
was disclosed in the HHP dataset and would therefore raise the
re-identification risk for any correctly matched patients.

Note that not all patients in the HHP dataset were hospitalized.
Some may, for example, have been seen in an outpatient clinic.
Therefore, by definition only a subset of the HHP dataset could
be matched with the SID.

For this attack, the re-identification risk metric would be the
proportion of individuals that could be matched between the
HHP and the SID datasets. This can be measured using the
marketer risk metric [31].

Since the SID covers all hospital discharges in California, the
equivalence class sizes for hospitalized patients in the HPN
population were equal to or smaller than the SID equivalence
classes for those patients. This means that if we managed the
risk in equation 2 for attack 1, we would also manage the risk
for attack 3.

Summary of Re-identification Risks from Attacks
Based on the above analysis of the various possible attacks, if
the re-identification risk from attack 1 could be managed, then
the risks from all of the other attacks would also be managed.
Below we describe the algorithm used in this study to manage
the risk from attack 1. Additionally, during the empirical
evaluation component of our study, we measured the
re-identification risks from attacks 1 to 3 to confirm that the
re-identification risks for all three attacks were acceptably low.

Methods for the De-identification of the HHP Dataset
We used an automated algorithm to de-identify the dataset
through generalization. Our base automated de-identification
algorithm was OLA [38]. OLA provides a globally optimal
solution and has been shown to have good performance on real
health datasets [38]. It is a k-anonymity algorithm. The
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k-anonymity criterion is one of the most common ways to
de-identify a dataset [38-42] and can be used to manage the
probability of re-identification due to identity disclosure [28].
OLA has been designed to work only on cross-sectional data.
As we describe further below, we have extended this algorithm
to de-identify longitudinal data. We refer to our extended
algorithm as longitudinal OLA (LOLA).

Base Algorithm
We will provide a brief overview of how LOLA works and its
parameters, and then explain how we modified these parameters
for the de-identification of the longitudinal HHP dataset.

Input

LOLA has two inputs. The first is the k value, which indicates
the maximum amount of re-identification risk the data custodian
is willing to take, and this determines the amount of
de-identification that will be applied. The k value is the
minimum size of an equivalence class. This means that the
maximum probability of a record being correctly re-identified
is given by 1/k (this is the risk threshold). LOLA’s second input
pertains to the percentage of records that have a risk higher than
the risk threshold: the MaxSup parameter.

In our case we defined k = fj, where the fj value is the minimum
equivalence class size in the HHP dataset. Since the risk we
wanted to manage was 1/Fj, which was based on the equivalence
class sizes in the HPN member population, we made the large
sample assumption that fj = αFj, where α is the sampling fraction
and Fj is the smallest equivalence class size in the HPN
population. Therefore, we defined equation 3 (Figure 1).

For example, if we had set Fj = 20 and a 20% sampling fraction
was used, then the k value for LOLA would have been 4.

Note that in practice more sophisticated methods for estimating
fj would be used as described elsewhere [28,29], especially for
small sampling fractions. In our case, we used an estimator
based on the truncated Poisson distribution [28].

Generalization

A key step in LOLA is generalization. Generalization reduces
the precision in the data. As a simple example, a patient’s date
of birth can be generalized to the month and year of birth, to
the year of birth, or to a 5-year interval. Allowable
generalizations are specified in generalization hierarchies. Let
us consider an example dataset with only 3 quasi-identifiers:
date of birth (d), gender (g), and date of visit (p). Figure 2 shows
the domain generalization hierarchies for these quasi-identifiers.
These hierarchies describe how the precision of each
quasi-identifier can be reduced during generalization.

All of the possible generalizations can be expressed in the form
of a lattice as shown in Figure 3. In this lattice each possible
generalization is represented by a node starting from the original
dataset at the lowest node, <d1,g1,p1>. As one moves up the
lattice, the quasi-identifiers are generalized. For example, node
<d2,g1,p1> has the date of birth generalized to month and year.
The objective of LOLA is to efficiently find the best
generalization solution (node) in that lattice. The best node
meets two criteria: (1) the proportion of records that are
considered to have a high probability of re-identification is less
than or equal to MaxSup, and (2) the best node has the smallest
amount of information loss.

After efficiently evaluating the nodes in the lattice, LOLA
identifies the candidate nodes that meet criterion 1 above. Out
of the candidate nodes, LOLA then chooses the node with the
smallest information loss among the candidate nodes, and this
meets criterion 2. Information loss is measured in terms of a
general entropy metric, which was found to have properties
superior to those of other commonly used metrics in the
literature [38].

Figure 2. The three domain generalization hierarchies for the 3
quasi-identifiers: date of birth (d), gender (g), and visit date (p).
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Figure 3. A lattice showing the possible generalizations of the 3 quasi-identifiers: date of birth (d), gender (g), and visit date (p).

Acceptable Re-identification Risk
In the United States, the HIPAA Privacy Rule Safe Harbor
de-identification standard was conceptualized using population
uniqueness of individuals as the measure of risk, as documented
in the responses to comments by the Department of Health and
Human Services [43,44]. The population uniqueness standard
means that individuals who are the only one in their equivalence
class are at high risk, but if there is more than one person in the
equivalence class then they are not considered at a high risk of
re-identification. The designers of Safe Harbor considered very
small” risk in terms of the percentage of the population that is
unique. Studies have shown that in datasets that meet the Safe
Harbor de-identification standard, 0.04% of the population is
unique [45,46]. HPN wanted to ensure that the risk exposure
for the HHP dataset was equal to or less than the Safe Harbor
risk exposure. Risk exposure is defined as loss × probability.

Risk exposure only comes from the records that have an
unacceptably high probability of re-identification. In our case,

the loss pertained to the number of individuals who could be
re-identified (ie, individuals at a high risk of re-identification),
and probability meant the probability of re-identification.
Therefore, for a dataset with N records, the maximum risk
exposure under Safe Harbor would be 0.004 × N × 1.

A uniqueness threshold would be considered quite high by most
standards (for example, see [13,47-60]). HPN decided that a
probability of re-identification for a record in the HHP dataset
of .05 was an acceptable risk. The choice of this value was
informed by two precedents. The Center for Medicaid &
Medicare Services has created public-use files containing claims
data from a sample of beneficiaries while ensuring that the
probability of an individual being re-identified was less than .1
[61]. An analysis to prepare a public discharge abstract dataset
from Canadian hospitals used a threshold probability of .05
[19]. The value chosen by HPN erred on the more conservative
side of this range.
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This means that, if the probability was equal to or lower than
.05, then the data would be acceptable for release. To ensure a
risk level that low we needed to ensure that Fj ≥ 20 for all j (ie,
Fj = 20 in equation 3).

If we revisit our definition of k in equation 3, we would have k
= 30α, since this threshold translates to a maximum equivalence
class size of 20 in the population.

To retain the same level of maximum risk exposure as Safe
Harbor with our proposed .05 probability threshold, we could
accept only 0.8% of the records to have a probability that was
higher than the .05 threshold for the same value of N (ie, .05 ×
0.008 × N = 1 × 0.004 × N). The 0.8% value then represented
the MaxSup that was used in the LOLA algorithm.

Therefore, if the condition in equation 4 (Figure 1) was met,
then we considered the risk acceptable. In equation 4, I(·) was
the indicator function. Making the large sample simplification

resulted in equation 5 (Figure 1), although, as noted above,
better estimates of Fj could be used for small samples [28,29].

Generalization Hierarchies for the HHP Dataset
As Table 4 shows, 4 quasi-identifiers had generalization
hierarchies: Age, DaysInHospital, LOS, and DSFC. These were
the ones we used to construct the lattice for the application of
LOLA. For the remaining quasi-identifiers there was only one
level of predetermined generalization.

Each claim had up to 4 diagnosis codes. These were converted
into 2 values. The ICD-9-CM diagnosis codes were generalized
into 45 primary condition groups, which have been determined
to be good predictors of mortality [62]. We also created a
categorized comorbidity score (Charlson index) [63,64]. The
CPT codes were generalized to a higher code in the CPT
hierarchy. In consultation with clinical experts, we also grouped
values within the Specialty and PlaceOfService variables. All
groupings are described in Multimedia Appendix 1. Table 4
summarizes all of the generalization hierarchies used.

Table 4. Description of the generalization hierarchies for the quasi-identifiers.

DescriptionQuasi-identifier

Years → 5-year interval; 80+ → 10-year interval; 80+ → 20-year interval; 80+Age

no changeSex

Days → days to 2 weeks; >2 weeks → days to 1 week; 1–2 weeks; >2 weeksDaysInHospital Y2/Y3

Original specialty → grouped specialty (see Multimedia Appendix 1)Specialty

Original place of service → grouped place of service (see Multimedia Appendix 1)PlaceOfService

Original CPT code → grouped CPT codeCPTCodea

Days → days up to 6 days, weeks afterward → days up to 6 days; (1–2] weeks; (2–4] weeks; (4–8] weeks; (8–12 weeks];
(12–26] weeks; 26+ weeks → <1 week; (1–2] weeks; (2–4] weeks; (4–8] weeks; (8–12 weeks]; (12–26] weeks; 26+
weeks → <4 weeks; (4–8] weeks; (8–12 weeks]; (12–26] weeks; 26+ weeks

LOSb

Days → weeks → 2 weeks → monthsDSFCc

ICD-9-CMd code → primary condition group (see Multimedia Appendix 1)Diagnosis

a Current Procedural Terminology.
b Length of stay in hospital.
c Days since first claim.
dInternational Classification of Diseases, 9th revision, Clinical Modification.

Adversary Knowledge and Power
The power of the adversary reflects the number of claims that
the adversary would have background information about, and
it pertains to the claims data and not to the basic information
about the patients (such as their demographics). We denoted
the power of the adversary as p. If each claim had only 1
quasi-identifier, then p would mean that the adversary had
knowledge about the value for that quasi-identifier in p claims.
With more than 1 quasi-identifier in each claim, the adversary
would know each of the quasi-identifier values for p claims.

Previous research that considered the power of the adversary
always assumed that the power is fixed for all patients
[30-32,65,66]. However, intuitively it makes sense that the
adversary would have different amounts of background
knowledge, or power, for different patients. For example,

everything else being equal, it is easier to have background
information about a patient with a large number of claims than
about a patient with few claims. Therefore, we would expect
power to increase monotonically with the number of claims that
a patient has.

Also, it is likely that certain pieces of background information
are more easily knowable than others by an adversary, making
it necessary to treat the quasi-identifiers separately when it
comes to computing the power of an adversary. For example,
it would be easier to know a diagnosis value for patients with
chronic conditions whose diagnoses keep repeating across
claims. In such a case, if the adversary knew the information in
1 claim, then it would be easier to predict the information in
other claims, increasing the amount of background knowledge
that the adversary can have. In this case the diversity of values

J Med Internet Res 2012 | vol. 14 | iss. 1 | e33 | p. 9http://www.jmir.org/2012/1/e33/
(page number not for citation purposes)

El Emam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


on a quasi-identifier across a patient’s claims becomes an
important consideration. Therefore, we expect the power of an
adversary to decrease monotonically with the diversity of values
on the quasi-identifiers.

As Multimedia Appendix 1 shows, we found that the
correlations among the diversity of quasi-identifiers tend to be
small to moderate. For example, the correlation between the
diversity of Specialty and LOS was .08. This means that there
is a very weak relation between the diversity in these two
variables. On the other hand, the correlation between the
diversity of Specialty and CPTCode was .4 and that between
LOS and DSFC was –.44. In the former case it means that the
more varied the specialty of the treating physician, the more
varied the procedures. In the latter case, the more varied the
LOS, the less varied the time between claims. These
relationships make sense, but they also suggest that it would be
more appropriate to compute a power for each quasi-identifier
separately, because diversity is not uniform across
quasi-identifiers for the same patient.

We defined the power for a particular individual in the data and
for a particular quasi-identifier as pih, where i represents the
individual and h represents the quasi-identifier. In Multimedia
Appendix 1 we present a method for computing a value for pih

that takes into account the number of claims and diversity. We
also set the maximum power pm as max(pih) = 5. This means
that, for any single patient, the maximum number of values
(claims) that an adversary would have is 5 for each
quasi-identifier. For instance, if there are 2 quasi-identifiers,
then the adversary can have a maximum of 10 pieces of
information on the patient. In our empirical evaluation we
assessed the sensitivity of our results to this value.

We made two assumptions about the knowledge of the
adversary: (1) the adversary would not know which values on
the quasi-identifiers were in the same claim (the inexact
knowledge assumption), and (2) the adversary would not know
the exact order of the claims (the inexact order assumption)
beyond what is revealed through the DSFC quasi-identifier,
which is consistent with other models of transactional data in
the disclosure control literature [30-32,65,66]. However, we
did test the sensitivity of our results to these assumptions in our
empirical evaluation.

Node Computation
As noted earlier, the LOLA algorithm performs an efficient
search through the lattice. During this search it needs to evaluate
the percentage of records that are high risk for some of the nodes
in the lattice. This is called node evaluation.

It would have been computationally very expensive for us to
evaluate all combinations of pih values for each quasi-identifier.
For example, computing all combinations of 5 values from, say,
100 claims would have required more than 75 million
computations of risk. Since these 5 combinations would be
different for each patient, this would need to be repeated tens
of thousands of times.

Therefore, we used a hierarchical bootstrapping approach [67].
Here we sampled 10,000 patients with replacement, and for

each sampled record we selected pih quasi-identifier values
across the claims without replacement. We then computed the
proportion of patients who were at high risk in each iteration
and took the mean across 1000 iterations. If the mean number
of patients who were flagged as high risk was greater than
MaxSup, then we did not consider the node to be a candidate
solution (see equation 5, Figure 1). Multimedia Appendix 1
provides a complete description of the node computation.

Empirical Evaluation
After the de-identification of the dataset using LOLA, we
wanted to empirically evaluate whether the risks from the three
plausible attacks were appropriately managed. Hence, we
performed an empirical evaluation.

Attack 1
To evaluate the actual probability of re-identification under this
attack, we developed a separate attack program that would
simulate exactly what an adversary would do. This program
was developed by an independent programmer not involved in
the development and application of LOLA described above.

The simulated attack assumed that an adversary would choose
a patient from the HPN population at random. The adversary
would not know whether that individual was in the HHP dataset,
and hence this would introduce some uncertainty. If the
individual was in the dataset then we computed the appropriate
pih value for each quasi-identifier for that individual, and then
selected the items of background knowledge about the
individual. We then attempted to match the background
knowledge with all of the patients in the competition dataset.
The simulation was run 10,000 times, and the average match
success rate gave us an estimate of the probability that an HPN
patient could be correctly re-identified from the competition
dataset under the assumptions that we made.

The purpose of the simulated attack was to mimic what an
adversary would do. We assumed that the adversary had
background information about Alice. Alice may be the
adversary’s neighbor or a famous person. She could also be
someone the adversary selected at random from all HPN
members.

The simulation dataset had two levels. Level 1 was the basic
patient demographics as in Table 2. At level 2 were the
quasi-identifiers in each claim, and a patient may have had a
large number of claims. The level 2 data had some
quasi-identifiers as shown in Table 3.

We also needed to create two versions of the de-identified
dataset. Version D1 of the dataset had all of the claims for each
patient. Version D2 of the dataset was the one with truncated
claims. It is version D2 of the dataset that was released for the
competition, but we needed D1 for the simulation. The level of
generalization in the two datasets was exactly the same, the
only difference being in the truncation of claims.

The following process was repeated 10,000 times:

• We drew a sample from a binomial distribution with a
probability of α. This reflects the probability that an
individual that the adversary knew about was in the dataset.
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If the value drawn was 1, then we could continue; otherwise,
we would go to the next iteration (and the current iteration
was considered a failed match).

• Then we chose a target individual from the D1 dataset at
random.

• We chose at random pih values for each level 2
quasi-identifier from the D1 dataset for that target
individual. These values and the level 1 quasi-identifiers
were the background information that the adversary would
have.

• We matched that background information to the records in
D2. This produced a matching equivalence class.

• One of the records was selected in the matching equivalence
class at random.

• If the selected record was the correct patient then that was
a successful match; otherwise, it was considered a failure.

Across the 10,000 iterations we computed the proportion of
times that a correct match was found. This was the
re-identification probability for the dataset taking into account
the uncertainty due to the fact that we had a sample and due to
the adversary not knowing which claims were truncated.

Attack 2
To compute marketer risk [29] for attack 2 we assumed that the
voter registration list captured the full population, an assumption
used in previous research as well [35]. We first needed to
calculate the size of the equivalence classes in the population
of California in the counties serviced by HPN. In this case, the
equivalence classes were defined by the number of people born
of each sex, in one of the counties of interest, and of each age.
To compute this size, we took age and sex values from the 2000
census (the 2010 census data were not available at the time we
performed this analysis), which were available at the county
level for 5-year intervals (top-coded to 90+) on the American
FactFinder website from the Census Bureau. This produced 20
equivalence classes per county. We derive in Multimedia
Appendix 1 a closed-form equation for the expected number of
records that would be correctly matched when a sample of a
given size is drawn from a population. The derivation allowed
us to compute expected marketer risk without having to perform
an actual matching experiment or a Monte Carlo simulation.

Attack 3
We estimated the proportion of HHP records that could be
correctly matched with the SID on the quasi-identifiers using
the closed-form marketer risk calculation described in
Multimedia Appendix 1. Here we assumed that the HHP would
be a sample from the SID. The marketer risk calculations were
performed for different combinations of quasi-identifiers. We
assumed that the HHP dataset had all of the visits in the SID,
and therefore all of the visits could be used for matching. We
purchased the SID for the state of California from AHRQ for
the 3 years covered by the HHP dataset to perform this analysis.

Sensitivity Analysis
We also analyzed sensitivity for the assumptions we made under
attack 1. We explored three relaxations to the assumptions:

• The maximum power of the adversary, pm, was higher than
our assumed value of 5. We set the power to 10 and then
to 15. With 6 quasi-identifiers, this would mean that the
adversary knew up to 60 to 90 pieces of information about
the patients they were attempting to re-identify.

• For 1 claim the adversary knew all of the quasi-identifiers
for that claim. For example, say that we had only 2
quasi-identifiers, LOS and Diagnosis. Then we would
assume that the adversary knew the LOS and Diagnosis
values for the same claim. This relaxes the inexact
knowledge assumption.

• The adversary knew the order of 1 pair of quasi-identifier
values. For example, the adversary would know that
diagnosis A preceded diagnosis B. This would apply only
in cases where the power for the quasi-identifier was greater
than 1. We would apply this for a pair of claims for each
quasi-identifier. This relaxes the inexact order assumption.

With these three types of sensitivity analyses we believed we
covered plausible scenarios in which the adversary would have
extensive knowledge about the individuals in the competition
dataset.

Results

The final claims dataset consisted of information from 113,000
patients, with 2,668,990 claims. The median number of claims
per person was 11 and the maximum 136. Only 9556 patients
had some of their claims truncated during the de-identification.

Making the conservative assumption that 0.8% of the individuals
with a probability of re-identification higher than our threshold
of .05 would have a probability of re-identification of 1, we
would expect at most 5.8% of the patients to be re-identified
based on our de-identification parameters.

After applying the LOLA algorithm to determine the optimal
generalizations, we obtained the final results presented in Table
5. With these generalizations, 0.84% of the patients could be
correctly re-identified using our simulated attack 1.

The risk calculation for attack 2 was that an expected proportion
of 0.0005% of the HHP dataset could be correctly re-identified
by matching with the appropriate counties in the California
voter registration list. Furthermore, there are restrictions on the
use of the California voter registration list that would prohibit
such re-identification attempts [35]. Therefore, attack 2 was
deemed to be very low risk.

The results for attack 3 are shown in Table 6 for various
combinations of quasi-identifiers by year and across all years.
As shown, the match success proportion was quite low, making
the risk of gaining correct additional information about the HHP
patients acceptable given our thresholds.

Table 7 shows the results of the simulation attack to evaluate
sensitivity to violations of our assumptions for attack 1. The
re-identification probability was not affected much by the
increase in the power of the adversary. A primary reason was
that many patients had 5 claims or fewer. Therefore, increasing
the power did not necessarily mean that the adversary would
have more background information about them. If we assume
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that the adversary would know which pieces of information
were in the same claim, this would increase the risk, but even

at a power of 15 the probability was below what would be
considered acceptable.

Table 5. Final generalizations in the dataset.

GeneralizationQuasi-identifier

10-year interval; 80+Age

No changeSex

Days to 2 weeks; >2 weeks in year 2DaysInHospital Y2

Days to 2 weeks; >2 weeks in year 3DaysInHospital Y3

Grouped specialty (see Multimedia Appendix 1)Specialty

Grouped place of service (see Multimedia Appendix 1)PlaceOfService

Grouped CPT code (see Multimedia Appendix 1)CPTCodea

Days up to 6 days; (1–2] weeks; (2–4] weeks; (4–8] weeks; (8–12 weeks]; (12–26] weeks; 26+ weeksLOSb

4 weeksDSFCc

Primary condition group (see Multimedia Appendix 1)Diagnosis

a Current Procedural Terminology.
b Length of stay in hospital.
c Days since first claim.

Table 6. Estimated proportion of all records in the Heritage Health Prize dataset that would be correctly matched against the State Inpatient Database.

All yearsYear 3Year 2Year 1CPTcPCGbNumber of
visits

SexLOSaAge

0.0051410.0015150.0014780.001612XXXX

0.0097350.0059650.0056840.007105XXXX

0.0135790.0109280.0101560.013334XXXX

0.0159910.0137970.0127020.017272XXXXX

a Length of stay in hospital.
b Primary Condition Group.
c Current Procedural Terminology.

Table 7. Percentage of total records correctly matched under simulated attack with different assumptions about the number of claims (power).

Power of adversary

15105Assumption

1.17%0.94%0.84%Original adversary assumptions

3.87%3.72%3.67%Multiple quasi-identifiers in the same claim

1.2%1.0%0.96%Ordered claims

Discussion

Summary
The detailed re-identification risk assessment on the HHP dataset
allowed the disclosure of comprehensive longitudinal claims
information on a large number of individuals while being able
to make strong statements about the ability to re-identify these
individuals. The de-identification we performed ensured that
the risk was acceptable under different types of attacks, even
to the extent that we allowed for some of our initial assumptions
to be incorrect. In particular, we were able to ensure that the

risk exposure was at or below the current risk exposure under
the HIPAA Safe Harbor de-identification standard.

Ensuring the utility of the dataset is an important requirement
in any de-identification effort. If no team is able to meet the
prediction performance threshold to win the grand prize, then
this may be because the threshold was too ambitious or because
the de-identification itself made achieving that threshold
difficult. An evaluation of the accuracy of the models before
and after de-identification would be a useful exercise to help
inform future competitions and fine-tune de-identification
methods.
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As our literature review in Multimedia Appendix 1 illustrates,
existing de-identification methods for longitudinal data would
not have created a dataset suitable for this competition. In that
regard, the approach presented here is one of the few available
for creating public health datasets.

Limitations
Alternative ways for grouping the diagnosis and procedure codes
could have been used. For example, we could have clustered
the codes based on the average number of days of
hospitalization. This would potentially have retained some
important relationships in the data. Furthermore, it would ideally
be necessary to perform this clustering using all of the
quasi-identifiers to ensure that the multivariate relationships
are retained. The practical challenge with such an approach was
that many patients had zero days in hospital (for example, they
were outpatients). This would then have resulted in coarser

groupings than those we included with our analysis. Appropriate
grouping of such nominal variables is an important area of future
research to address constraints imposed by real datasets.

We did not consider the real possibility that there were errors
in the background knowledge of the adversary. If errors exist
then the match percentages would be lower than those we
presented in our results.

Our analysis did not address risks from attribute disclosure. As
noted earlier, there are no known attribute disclosure attacks on
health data, and the HIPAA Privacy Rule does not require the
management of attribute disclosure. This makes it difficult to
determine what acceptable risk standards for attribute disclosure
might be. Nevertheless, it would be appropriate to develop
acceptable standards for managing attribute disclosure for future
data releases.
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