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Abstract

Background: Missing data is a common nuisance in eHealth research: it is hard to prevent and may invalidate research findings.

Objective: In this paper several statistical approaches to data “missingness” are discussed and tested in a simulation study.
Basic approaches (complete case analysis, mean imputation, and last observation carried forward) and advanced methods
(expectation maximization, regression imputation, and multiple imputation) are included in this analysis, and strengths and
weaknesses are discussed.

Methods: The dataset used for the simulation was obtained from a prospective cohort study following participants in an online
self-help program for problem drinkers. It contained 124 nonnormally distributed endpoints, that is, daily alcohol consumption
counts of the study respondents. Missingness at random (MAR) was induced in a selected variable for 50% of the cases. Validity,
reliability, and coverage of the estimates obtained using the different imputation methods were calculated by performing a
bootstrapping simulation study.

Results: In the performed simulation study, the use of multiple imputation techniques led to accurate results. Differences were
found between the 4 tested multiple imputation programs: NORM, MICE, Amelia II, and SPSS MI. Among the tested approaches,
Amelia II outperformed the others, led to the smallest deviation from the reference value (Cohen’s d = 0.06), and had the largest
coverage percentage of the reference confidence interval (96%).

Conclusions: The use of multiple imputation improves the validity of the results when analyzing datasets with missing
observations. Some of the often-used approaches (LOCF, complete cases analysis) did not perform well, and, hence, we recommend
not using these. Accumulating support for the analysis of multiple imputed datasets is seen in more recent versions of some of
the widely used statistical software programs making the use of multiple imputation more readily available to less mathematically
inclined researchers.

(J Med Internet Res 2010;12(5):e54) doi: 10.2196/jmir.1448
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Introduction

Missing data is a common nuisance in eHealth research [1,2].
Subjects may be unwilling or unable to respond to some items
or may fail to complete sections of questionnaires due to lack
of time and interest, thus leading to data “missingness.” In
longitudinal studies, participants may drop out early or be
unavailable during one or more data collection waves. If not
addressed properly, data missingness can induce bias and corrupt
external validity, which is both inevitable and uncontrolled by
the researcher [3]. Because many of the statistical procedures
used by researchers are designed to have complete datasets, it
is important to handle missing data in a principled manner [4].

As dropout rates in eHealth studies tend to be relatively high
and are even considered typical by some, addressing data
missingness and dropout is of great importance. The observation
that in any eHealth trial a substantial proportion of users drop
out before completion has been called the “Law of Attrition”
[1]. A recent review by Christensen and colleagues [2] provides
an overview of dropout rates in eHealth interventions for
depression and anxiety. Completion rates for online depression
interventions ranged from 43% to 99%, with some trials
indicating poorer retention after a longer follow-up. The results
of one trial of an intervention to treat anxiety in this review
reported a 6-month follow-up rate of 44% in the experimental
group [2]. In reporting outcomes of a study with a considerable
dropout rate, it is important to choose statistical techniques that
are appropriate for the analysis of datasets with missing
observations [5].

The primary concern when facing substantive missingness is
that a study with high attrition rates may yield biased estimates
(of the mean, for example) caused by a biased sample. Patients
that leave studies prematurely have been shown to be more
likely to be involved in drug use or deviant behavior [6-8], to
have poorer academic performance, and to be less skillful in
resisting peer pressure than other subjects [9]. Edlund and
colleagues [10] found that sociodemographic characteristics
associated with intervention dropout included low income,
young age, and a lack of adequate health insurance coverage.
Patient attitudes associated with dropout include viewing
treatment as relatively ineffective and feeling embarrassed about
seeing a mental health provider. Christensen and colleagues [2]
identified several reasons for dropout from eHealth trials: time
constraints, lack of motivation, technical or computer-access
problems, a depressive episode or physical illness, the lack of
face-to-face contact, preference for taking medication, perceived
lack of treatment effectiveness, improvement in condition, and
burden of the program. Therefore, dropout from eHealth
interventions cannot be considered “random,” but may be based
on participants’ characteristics, possibly leading to biased
estimators if not addressed adequately.

In short, four key reasons for the use of missing data approaches
should be recognized: (1) Missing data may compromise
randomization integrity in randomized clinical trials, as drop-out
rates may differ over the trial arms. (2) In all longitudinal study
designs, missing data may introduce selection bias, as is made
clear in the previous section. (3) An intention to treat

analysis—as is requested in the consolidated standards of
reporting trials (CONSORT) statement and in most other
guidelines for the analysis of randomized (controlled) clinical
trials (RCTs)—is a necessary step when clinical endpoints are
missing for some of the participants [11]. (4) For all possible
study designs, missing data may introduce a loss of power, some
of which may be won back by using appropriate missing data
approaches.

Remarkably, the problems encountered and the solutions
implemented while solving missing data problems are rarely
mentioned outside the statistical literature [11]. As resources
or even a theoretical framework are sometimes lacking,
researchers, methodologists, and software developers resort to
editing the data to disguise an appearance of completeness.
Unfortunately, ad hoc edits, or not handling missingness
explicitly, and analyzing data using only complete cases may
do more harm than good. These approaches could lead to results
that are biased, lacking in power, and unreliable [12]. In the
same vein, inappropriate use of missing data approaches will
lead to biased results. This will be discussed in more detail for
one of the tested approaches, although it applies to each of the
other techniques as well. In general, in cases of data missingness,
optimal analysis results will be obtained with the appropriate
use of missing data approaches. Any other approach could lead
to severe bias.

The aim of this paper is to provide a straightforward primer for
eHealth researchers who seek solutions for missingness in
datasets. To provide researchers with tools for working with
data missingness, this paper reviews the strengths and
weaknesses of the most common missing data approaches and
tests the approaches in a simulation study. Theory on
missingness patterns and the most widely used methods of
handling missing data are comprehensively presented. The
validity, reliability, and coverage of 9 different methods for
dealing with incomplete datasets are presented. Some of these
methods are relatively straightforward and basic, while others
are more advanced and use computationally demanding
algorithms to estimate missing values. Although the technical
and mathematical details of the presented methods are outside
the scope of this paper, those interested can consult with any
of a number of references [12-16]. The primary goal of
implementing any of the discussed approaches is to obtain
unbiased estimators. This is achieved through the creation of
datasets in which missing values are replaced by appropriate
values to conserve the properties (ie, mean, variance, and
distribution) of each variable. These imputed values together
with the collected “real” data lead to unbiased estimates of
parameters [12].

In general, 4 forms of missingness can occur in longitudinal
studies: (1) In the case of initial nonresponse, no baseline data
is collected for the participant, although follow-up measures
may have been completed. (2) Loss to follow-up is the other
way around: baseline data is collected, but (at a certain time
point) the researchers fail to collect follow-up data. (3) Wave
nonresponse is closely related to loss to follow-up in that data
is not collected during one or more of the “waves,” but data are
collected during earlier and later measurement waves. Missing
data has to be interpolated if this form of missingness occurs.
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(4) The fourth form of missingness stems from item
nonresponse. This occurs when a participant fails to respond to
certain measures or questions, such as when some of the items
from a questionnaire are skipped. For example, when the missing
items are part of a highly correlated construct measurement (eg,
one of the 16 items in a quality of life scale is missing),
imputation is possible based on the other 15 collected item
scores. In short, the selection of a missing data approach will
in part depend on the form of missingness encountered.
Although some of the presented methods may be efficacious at
handling data problems, the most important determinant for
preventing missing data values is to retain subjects in the study
[17]. However, it often may not be feasible to invest extensive
amounts of effort, time, and money to obtain nearly perfect
response rates. Even then, small amounts of missing data may
lead to substantial bias, depending on the pattern of data
missingness.

Patterns of Data Missingness
In general, 3 mechanisms of missingness are discerned: missing
at random (MAR), missing completely at random (MCAR), and
missing not at random (MNAR) [13]. Each of these 3 patterns
can have its own implications for the effects of missingness on
parameter estimates derived from the dataset. Although these
3 terms have formal statistical definitions, their practical
meaning for the purpose of this paper is best described through
examples [4].

Commonly, the probability that an observation is missing
depends at least in part on information that is present:
missingness is dependent on observed characteristics. This type
of missing data generally is referred to as missingness at random
or MAR [12]. The word “random” in MAR means something
rather different from what most researchers typically think of
as random. The randomness in MAR missingness means that
once all data have been controlled for, any remaining
missingness is random [4]. As long as missingness depends on
available data, but not on unavailable (missing) data, the
missingness pattern is considered MAR [12]. MAR can, for
example, arise when an investigator studies the predictive
validity of treatment adherence on the outcome of an
intervention. If patients who drop out of treatment have a
propensity for missing follow-up measurements, missing
follow-up data may have an MAR missingness pattern.
Missingness is dependent on a subjects’characteristic (treatment
adherence) that is available in the dataset.

Missing completely at random (MCAR) is a special case of
MAR [12]. If cases with missing data form a truly random subset
of the dataset, missing observations are considered MCAR. In
essence, this means that correct parameter estimates (but not
confidence intervals) can be obtained by using only the complete
cases from the dataset. Typically, MCAR arises when a portion
of questionnaire data from a study subject is accidentally lost.
Missingness is completely random and the probability that an
observation is missing is not related to any of the subjects’
characteristics. Sometimes, this missing data pattern is referred
to as ignorable missingness [4].

If the probability that an observation is missing depends on an
unmeasured factor, this factor is partly missing itself and

therefore not available, or the value of the observation predicts
its own probability for missingness, the missing data pattern is
called missing not at random or MNAR [12]. MNAR can be
referred to as nonignorable missingness. Estimators derived
from a dataset with an unaddressed MNAR missingness pattern
can be biased [4]. For example, asking a subject for his or her
income level without collecting data related to income may lead
to forms of missingness in correspondence with this MNAR
pattern. People with high incomes may be reluctant to provide
information on their earnings, so it might well be that missing
data are more likely to occur when the income level is relatively
high. Here, the predictor for missingness is related to unobserved
characteristics of the subject. Because this predictor is not
measured, imputing this missing value properly is complicated;
for example, one would have to specify a distribution for the
missingness [12].

In general, there is no way to test whether MAR or MNAR
holds in a dataset [12]. More specifically, Graham [4] indicates
that pure MCAR, MAR, or MNAR really never exists: these
concepts require almost untenable assumptions. In reality, often
a mixture of forms will be found. Collins et al (in [12])
demonstrated that in most realistic cases, an assumption of MAR
where MNAR is at hand leads to only minor impacts on
estimates and standard errors. MNAR missing data approaches
require the analyst to make assumptions about the model of
missingness; if this assumed model is incorrect, its results are
unpredictable and probably biased. Because of difficulties in
the straightforward application, MNAR methods are not widely
used. In this paper, we therefore do not focus on missing data
approaches for MNAR patterns.

For MAR and MNAR, it should be recognized that patterns of
missingness and the consequences for derived estimators are
not solely a characteristic of the data, but a combination of the
available data and the planned analysis. For example, if an
MNAR pattern in which an unobserved or unmeasured variable
is predictive of missingness (for example, left or right
handedness) but is not correlated with the endpoint of the study,
then the MNAR pattern does not lead to biased estimators (only
to a loss of power). Another example is pointed out by Graham
[4]. Suppose one develops a smoking prevention intervention.
Smoking in this example is measured at two time points: before
the start of the intervention (t1) and one year later (t2). Suppose
missingness at t2 is dependent on t1. If an analysis or missing
data approach is performed under a model in which t1 is
included, missingness on t2 follows an MAR pattern, whereas
t2 would follow an MNAR pattern if t1 was not included. In
other words, a biased estimator as a result of missingness can
only occur in reference to a specific dependent variable under
a specific statistical model. Some of the more advanced missing
data approaches discussed in this paper use this characteristic
to estimate and impute the missing values.

Missing Data Approaches
Over the last couple of decades, several methods for handling
missingness have been developed. In this section, a number of
these missing data approaches are presented. The approaches
that are most useful and applied most often are described below
[4]. The first three approaches in this overview are considered
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“basic” as they are conceptually straightforward and require
minimal computations, such as complete case analysis, listwise
mean imputation, and last observation carried forward (LOCF).
The “advanced” approaches are newer, require more
computational power, and are conceptually more complex than
basic approaches. Two of these advanced approaches are
imputation techniques that replace missing values in the dataset
with a single approximation; these approaches are regression

imputation and expectation maximization imputation. The final
four approaches are multiple imputation techniques replacing
a single missing observation with multiple simulated values:
NORM, MICE, SPSS MI, and Amelia II. The use of these last
four approaches leads to multiple instances of the original
dataset with a variance in the imputed values for the missing
observations that resembles the accuracy (or inaccuracy) of the
missing values approximation. See also Table 1.

Table 1. Missing data approaches in this study

TypeMissingness PatternDescriptionApproach

Basic, singleMCARaOnly cases without missing observations in analysisComplete cases

Basic, singleMCARbImputes missing observations with listwise mean for each variableMean imputation

Basic, single-Imputes the last available observation in the current data collection waveLOCF

Advanced, singleMAR, MCARImputes missing observations by prediction based on other variables in a
regression model

Regression imputation

Advanced, singleMAR, MCARImputes missing observations using expectation maximization algorithmEM imputation

Advanced, multipleMAR, MCARMultiple imputes missing observations under a normal modelNORM

Advanced, multipleMAR, MCARMultiple imputes missing observations using chained equationsMICE

Advanced, multipleMAR, MCARMultiple imputes missing observations under a normal model in SPSSSPSS MI

Advanced, multipleMAR, MCARMultiple imputes missing observations using a bootstrapping-based algo-
rithm

Amelia II

a This approach will lead to unbiased point estimators (eg, means) under MCAR, but will result in lowered power and sample size.
b This approach will lead to unbiased point estimators (eg, means) under MCAR, but will result in biased, smaller confidence intervals.

Complete Case Analysis
The most popular and most often used missing data handling
method is complete case analysis (casewise deletion). In
complete case analysis, all cases with missing values are
removed from the dataset before analysis. This method is
straightforward in its application. This technique assumes
MCAR and its application will lead to biased results under other
patterns of missingness. Even under a valid assumption of
MCAR data, this method is not preferential because the reduced
number of cases used for the analysis leads to loss of statistical
power [4].

Listwise Mean Imputation
Listwise mean imputation, in which missing values of each
variable are imputed with the arithmetic mean of the available
observations for the variable, attempts to overcome the loss of
power of complete case analysis. Like complete case analysis,
listwise mean imputation assumes the MCAR missingness
pattern, which is uncommon in empirical datasets with missing
observations. If the data missingness pattern is not MCAR,
imputing missing values with the listwise mean will result in a
biased estimation of the mean. Under all missing data patterns
(also MCAR), listwise mean imputation will reduce the variance
of the variable. Imputed values equal to the mean do not
contribute to the total variance. This leads to decreased standard
errors and artificially small confidence intervals. Because of
the inadequacy of listwise mean imputation to conserve the
imputed variables variance, this method is considered by some
to be one of the worst missing data approaches [18].

Last Observation Carried Forward
The third most-often used method is last observation carried
forward (LOCF). This approach is regularly used in
epidemiological research, especially in clinical trials [19]. LOCF
takes into account the individual’s previous observed value on
a given variable [20]. If an observation at a certain data
collection wave is missing, the last observed value is then used
as an estimate for this missing observation. A related method,
last observation carried backward (LOCB), works according to
the same approach, but imputes a newer observation in the case
of a missing earlier observation of the same individual. Both
carried observation methods can only be used in longitudinal
research designs with at least one complete observation. Despite
its wide application in clinical trials, however, recent empirical
studies have cautioned against the use of this technique [21]
and have demonstrated its bias [22]. This bias mainly stems
from the fact that imputing previously measured values can be
conservative in some situations, but not in others. LOCF
assumes there will be no further improvement and, therefore,
underestimates the treatment effects in an effective intervention
if the intervention’s effect is to change a current state (of
well-being, for example). However, if the intervention’s
expected effect is to slow down a decline (for example in a
cognitive enhancement intervention for patients with
Alzheimer’s disease), carrying forward a previous observation
will exaggerate the found treatment effects. In RCTs, LOCF
may also have unexpected anticonservative effects. In the control
or placebo arm of a study, LOCF assumes no (spontaneous)
change, which is not conservative because study participants
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in the control arm may improve as well. When there is an
assumption of no change in the control condition, but in reality
there is a change, larger differences between treatment and
control arms in RCTs may be artificially produced. Suddenly,
LOCF is not conservative anymore [23]. In general, in studies
with relatively favorable baseline measures, LOCF will project
these favorable baseline scores to clinical endpoints, thus
exaggerating the efficacy of the intervention. Because of these
unexpected anticonservative effects, we strongly advise against
the use of LOCF.

Regression Imputation
Regression imputation is the first of two “advanced” single
imputation methods discussed in this paper. By adding randomly
sampled “noise” from a normal distribution to a prediction
model based on linear regression, the regression method imputes
missing values based on the relations between variables in the
dataset while preserving the variables’ variance. There is some
discussion about the number of predictors that should be
included in the model. In general, the use of more predictor
variables in the regression equation is not necessarily better. A
more parsimonious model, where only statistically significant
predictors are retained, is usually a better model. However, it
is important to keep in mind that two types of predictor variables
should be retained in the model: those predicting the variable(s)
with missing observations and those that predict missingness.
The latter group of predictors help to correct for differential
dropout-inducing bias to the estimators. In theory, regression
imputation is applicable under both MCAR and MAR
missingness patterns.

Expectation Maximization Imputation
The other advanced single imputation method discussed here
is based on expectation maximization (EM). The EM approach
is a procedure that estimates unmeasured data and is based on
iterating through two alternating steps [24]. In the expectation
step, an appropriate value is calculated for the missing
observation based on the available data and its distribution. In
the maximization step, an appropriate value is calculated based
on the current updated dataset. The model can be improved
because original data will be used in addition to the proposed
missing data imputations calculated during the most recent
expectation step. These two steps are alternated numerous times:
after each expectation step a maximization step will follow.
After each iteration, a better model can be specified, leading to
more accurate missing value estimations. After the final
iteration, theoretically the most accurate estimation of the
missing values is reached: the EM procedure will impute this
value into the dataset as a replacement for the missing
observation.

Multiple Imputation
In recent years, multiple imputation (MI) has emerged as a
methodology for handling missing data. Originally, it was
viewed as being most appropriate for complex surveys, although
in the 1990s it was shown to be valuable in other settings as
well [14]. Multiple imputation is an approach in which the
missing values are replaced by multiple simulated versions.
“Multiple” refers to the custom of replacing missing values with

several different values, typically between 3 and 10 [25]. Rubin
[13] has shown that unless the rate of missing information is
very high, there is simply little advantage to producing and
analyzing more than 10 imputed datasets. Each of these
“replacement values” can be estimated using regression
equations, a form of EM, the identification of a “near-neighbour”
donor case with matching properties, or through a combination
of these methods. In any of these methods, the correlations
between the different variables in the dataset are taken into
account. Based on these correlations and other variable
properties, appropriate estimations for the missing values are
generated.

Missing values that are replaced with more than one possible
estimator will produce more than one completed dataset: each
of the 3 to 10 imputations leads to a new dataset containing the
original “complete” available observations and the new
“generated” imputed ones. Each of the 3 to 10 datasets is first
analyzed as if it were a complete dataset with no missing values.
The separate results can then be combined into one final result
according to specific rules. Rubin [13] presented formulae to
combine the estimators and standard errors obtained from the
3 to 10 imputed datasets into one estimator and one standard
error. The combined estimator is the arithmetic mean of the 3
to 10 estimators obtained from the imputed datasets; the
combined standard error is based on both the standard errors
and the variance of the 3 to 10 estimators of the imputed
datasets. The combined estimator and standard error can be used
for the calculation of, for example, t test statistics and analysis
of variance. A more recent paper shows how a variety of other
test statistics can be calculated as well [26].

From a researcher’s perspective, the biggest advantage of MI
is flexibility. It applies to a wide range of missing data situations
and is simple enough to be used by nonstatisticians.
Theoretically, this approach is superior to other models because
it often produces the most robust effects. In this paper, four
multiple imputation programs are compared. The first, called
NORM [15], was developed for use under S-PLUS (TIBCO
Spotfire, Somerville, MA, USA) or the R Statistical
Programming Environment, but is also available as a stand-alone
program. Using the NORM, one can perform multiple
imputations of multivariate continuous data under a normal
model. More information on its exact routines is presented in
[15]. The second MI program is called Multivariate Imputation
by Chained Equations, MICE [27], and was developed for use
under S-PLUS, R, Stata (StataCorp LP, College Station, TX,
USA), and as a stand-alone Windows program. MICE is an
attempt to combine the most attractive aspects of MI approaches
developed by [15] and [28]. The third MI program has been
included in SPSS Statistics (SPSS Inc, Chicago, IL, USA) since
version 17. According to the product information, this MI
module allows for quick and accurate data estimates in cases
where observations are missing [29]. The fourth MI program
is called Amelia II, developed by Honaker and colleagues [30].
Amelia II multiply imputes missing data in a single
cross-sectional dataset from time series data or from a time
series cross-sectional dataset. This new bootstrapping-based
algorithm it is presumed to be faster and more flexible than the
other programs.
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Methods

Source Data
The dataset in this simulation study was obtained from an online,
self-help prospective study for problematic alcohol consumers.
The online self-help program was developed by a substance
abuse treatment center in Amsterdam, the Netherlands. Each
new participant was invited for a measurement of alcohol
consumption, quality of life, self-efficacy, and demographics.
Data were collected at two waves, at baseline, and 3 months
after baseline. All the cases with missing values were removed
from the original dataset, resulting in a dataset with 124 cases,
with 0% missing data. The dataset contains self-reported daily
alcohol consumption quantities measured in standard drinking
units containing 10 grams of ethanol. These consumption
quantities were available at baseline and at the 3-months
follow-up. For the purposes of this paper, we used only the
subscale measuring alcohol consumption for the last 7 days,
measured using Timeline Follow-Back methodology [31].
Currently, a randomized clinical trial (Netherlands Trial Register
NTR-TC1155) on the effectiveness and cost-effectiveness of
this intervention is in the process of being executed [32].

This complete (0% missing) dataset was used as a reference
value for comparison of each approach. Next, one of the
weekdays from the follow-up measurement was selected and
an MAR missingness pattern was induced, leading to 50% MAR
missingness in this variable. The operationalization of MAR
applied by the execution of this macro is according to the
method suggested by Scheffer [25]. Briefly, for this method
two variables are necessary: (1) a variable predicting
missingness and (2) a variable in which missingness will be
induced. If the score of the missingness predictor variable is
high, the chance that missingness will occur in the missingness
variable is high; if the score of the missingnes predictor variable
is low, the chance on missingness is also low. As a result, the
proportion missing data in the missingness variable is correlated
with the value of the missingness predictor variable.

After MAR induction, the missing data approaches were
performed on the dataset with missing observations. For LOCF,
data collected at baseline were carried forward to the missing
follow-up measurement for the variable upon which missingness
was induced. All “advanced” missing data approaches came
with default software settings. It is possible to adjust these
settings to change the number of iteration steps, convergence
criteria, and the distribution of random error. For the presented
analysis, the default software settings were used. To test
sensitivity of the results to changes in these default software
settings, the study was replicated using stricter, more
calculation-intensive settings, that is, a larger number of
iterations or stricter convergence criteria. The results obtained
with these stricter settings did not differ systematically from
the results obtained using the default settings.

To investigate reliability and coverage of the results obtained
through these approaches, a resampling approach was
performed. A total of 75 samples of n = 124 were drawn with
replacement from the MAR imposed dataset, and these
resampled datasets had, on average, 50% MAR missingness on

the selected variable. Next, missing values from each dataset
were imputed using the different approaches. Figure 2shows
the arithmetic mean for the variable with imputed missing
values. Each point represents the mean value of postintervention
drinks, obtained from one of the 75 datasets. The area between
the two dashed horizontal lines indicates the 95% confidence
interval of the reference variable, which is the same variable
indicating postintervention drinks but before MAR missingness
is imposed. The white dot in each column indicates the mean
for the repeated application of each missing data method on the
75 datasets.

Superior performance of the MI approaches over the other
advanced approaches (and of the advanced approaches over the
basic approaches) was expected, based on previous studies
[12,25]. However, in contrast to previous publications, the
approaches tested in the current study used a dataset with
nonnormally distributed count data in order to mimic the
everyday application of these approaches. Count data
distributions are known for their deviation from the normal
distribution [33].

Validity, Reliability, and Coverage
For successful application in a variety of missing data situations,
it is important to test for reliability in addition to validity. For
example, will the use of the presented methods lead to
comparable results with repeated application? Coverage can be
regarded as a combined indicator for validity and reliability. It
is expected that coverage of the advanced approaches will
outperform the basic methods.

Validity was operationalized as the extent to which the estimate
obtained by a missing data approach approximated the reference
value. Validity (ie, test validity) was assessed by calculating t
values and effect sizes for the differences between the reference
value (mean variable score before MAR induction) and the
imputed variable (mean variable score after the induction of
MAR). Reliability was operationalized as the variance of the
estimates obtained through repeated application of each missing
data approach: the lower this variance, the smaller the
confidence interval and the higher the method’s reliability. The
third statistic calculated in this study was the coverage. This
coverage statistic was calculated using the data obtained in the
simulation study. It indicates the proportion of means within
the 95% confidence interval of the mean reference value: when
70 of the 75 bootstrapped mean values for a missing data
approach are within the 95% confidence interval of the reference
value, the coverage is 70/75 or 93%. This coverage measure
was previously used for comparable purposes, for example by
Schafer and Graham [12].

Results

The complete (reference) dataset and the datasets that resulted
after application of the missing data approaches are plotted in
Figure 1. Each point in this figure represents a single observation
(number of postintervention self-reported drinks per day for
each participant). The observations for the reference are shown
in the first column (a) on the x-axis. These observations are the
“true” complete observations before missingness was induced.
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Also shown on the x-axis (columns b to j) are the observations
that were produced after the MAR 50% missingness was
imposed and corrected by each of the nine missing data
approaches. Some horizontal jitter was added to the strip chart
to prevent equally valued observations from overlapping on the
y-axis. Please note that plotting the ideal missing data

approach’s observations would lead to results identical to the
reference plot in Figure 1. On the y-axis, the number of
postintervention drinks per day is indicated. For the 4 multiple
imputation approaches (columns g to j), only the first created
dataset was plotted.

Figure 1. Strip chart for 9 missing data approaches and the reference value

A number of participants reported zero postintervention drinks
per day; subsequently, their data points are plotted very close
to each other. As is often the case for count data, observations
are positive integers only and the distribution of the observations
is nonnormal. Table 2 shows descriptive summary statistics for
each of the methods compared with the reference. The
application of complete case analysis, listwise mean imputation,
regression imputation, and SPSS 17 multiple imputation led to

an underestimation of the mean number of postintervention
drinks. LOCF, and to a lesser extent EM imputation and NORM,
led to an overestimation of the mean. Regression imputation,
EM imputation, and NORM impute some negative values, which
is impossible from an empirical point of view; however, these
approaches could still produce unbiased estimators of mean and
variance, for example. Applications of MICE and Amelia II
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produced the closest approximations to the reference mean value, as determined by visual analysis of the data.

Table 2. Independent samples t tests for missing data approaches against reference value

Cohen’s dPDegrees of Free-
dom

t aSDMeanMethod

0124605.222.62Reference

-0.310.04176-2.092.631.39Complete cases

-0.350.01246-2.501.731.39Mean imputation

0.420.0012463.295.434.85LOCF

-0.320.01246-2.382.371.39Regression imputation

0.100.422460.8093.853.09EM imputation

0.070.532460.5349.553.14NORM

0.090.472460.7304.303.06MICE

-0.310.03246-2.262.031.49SPSS 17 MI

0.060.642460.4683.332.88Amelia II

a Independent samples t tests

To supplement the visual analysis with statistics, Table 2 shows
mean, standard errors, t statistics, and Cohen’s d effect sizes.
The t and d values quantify the differences between the reference
value and each of the imputed datasets. The lower its t statistic,
the more the mean value obtained after application of a missing
data approach resembles the reference value. This is an
indication of the validity of an imputation method. To further
indicate the extent to which the imputation results differ from
the reference value, effect sizes were calculated using Cohen’s

d. For this application, smaller effect sizes indicate better
imputation results. The standard deviations for mean imputation,
regression imputation, and SPSS multiple imputation are much
smaller than the reference confidence interval. This could
potentially lead to anticonservative testing results and, therefore,
inflated (or increased) risk for type I error (false positives).
NORM produced much larger confidence intervals; thus, NORM
may lead to an increased risk for type II error (false negative).
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Figure 2. Repeated application of nine missing data approaches

Figure 2 provides insight in the reliability of the nine missing
data approaches. The white dots in this figure show the
arithmetic mean of the 75 bootstrapped samples. The area
between the two dashed horizontal lines corresponds to the 95%
confidence interval of the reference value. Each black dot
indicates the arithmetic mean of one of the bootstrapped
samples. As in Figure 1, some horizontal jitter was added to
improve the visual presentation of the plotted data.

The nine approaches differed remarkably in the robustness and,
therefore, in the reliability of their results. The largest difference
between the simulated datasets was produced by the NORM
software package, with some of the highest mean values being
eight times larger than the smallest. The lowest variance was
seen in the complete cases, mean imputation, regression
imputation and SPSS MI. LOCF, EM imputation, MICE, and
Amelia II showed an average amount of inter-dataset variance.
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Table 3. Coverage of the reference confidence interval for imputed means

Variance of Bootstrapped SampleCoverage ProportionMissing Data Approach

0.0880.15Complete cases

0.0880.15Mean imputation

0.3810LOCF

0.2060.83EM imputation

0.1050.17Regression imputation

3.0270.43NORM

0.6220.71MICE

0.0930.23SPSS MI

0.2050.96Amelia II

Table 3 shows the variance of the means and the coverage for
each approach. For an estimation to be maximally valid and
reliable, at least 95% of the means obtained from the application
of an approach should be within the confidence interval of the
reference value [12]. The highest coverage was obtained by the
application of Amelia II. This approach was actually the only
one to reach the criterion of greater than 95% coverage. From
the single imputation approaches, EM imputation yielded the
highest coverage proportion.

Discussion

In this paper, the application of nine approaches for handling
missing data is presented and compared. The most valid result
was obtained using multiple imputations from the Amelia II
algorithm, closely followed by MICE, NORM, and EM
imputation. However, due to the large standard errors resulting
from the NORM algorithm, the power of the analysis based on
this dataset was much lower than the power of an analysis using
MICE or Amelia II would have been. The results obtained using
the other tested approaches differed significantly from the
reference value and can therefore be considered as less valid.

Although complete cases, mean imputation, regression
imputation, and SPSS multiple imputation led to reliable results
in the sense of small variance between the bootstrapped means
(Figure 2), their application resulted in less valid parameter
estimations (ie, the bootstrapped means are consistently lower
than the reference mean) and their coverage was well below
95%. Optimal coverage was achieved using Amelia II, followed
by EM imputation. Application of these two methods on the
example dataset led to the most valid and reliable results. In
general, it can be concluded that the more advanced approaches
led to better results. Other authors have tested some of the
presented approaches under both lower and higher missingness
rates than the 50% in this study, with comparable results [ie,
12,25].

To mimic the real-life missing data problems more closely in
this study, missingness was imposed on a variable containing
count data (alcohol consumption counts). However, it should
be noted that none of the presented approaches were specifically
designed for the imputation of nonnormally distributed count
data: specific missing data approaches for this type of data are
currently lacking. From the Schafer suite, in addition to NORM,

one could select CAT or MIX packages as an alternative, as
these are intended for categorical or mixed datasets; however,
these programs are also limited with regard to the imputation
of missing count data. On the other hand, according to [12],
excellent performance can be reached by imputing nonnormal
variables under normality assumptions with no transformations.
Based on the current study, it can be concluded that some
methods can handle nonnormal count data well, while others
perform less than optimally in such situations.

To evaluate the selected methods under more ideal conditions
as well, the methods were retested using a normally distributed
variable with missingness imposed under the same 50% MAR
pattern (data not presented here). Differences between the
methods became smaller; the less-than-optimal methods led to
better results under these conditions. Multiple imputation still
led to optimal results, and among the multiple imputation
methods, the best results were reached using Amelia II.

Both EM imputation and Amelia II performed reasonably well
in this study. EM imputation produces maximum likelihood
estimates for the missing values, thus approaching true sample
means and variances for an incomplete variable. However, being
a single imputation method, the accuracy or inaccuracy of this
estimation process is not accounted for in the variances of the
resulting estimators. This leads to smaller variances, smaller
confidence intervals, and therefore a greater risk of finding
significant differences between variables when there are no
actual differences (type I error, false positive). This shortcoming
of EM imputation and other single imputation approaches marks
the biggest advantage of multiple imputation. The latter captures
uncertainty due to missingness of data in the variance between
the generated datasets, making the estimators from multiple
imputed datasets less prone to this type I error.

The main reason why MI is not used more often is probably
due to the perceived complexity of its application. Working
with more than one instance of the dataset may seem
discouraging to researchers without extensive statistical
knowledge or interest. Second, the fact that widely used
statistical packages until recently did not natively support
multiple imputation makes it understandable that most
researchers using these software programs do not directly chose
to apply this technique in case of missing data. In that sense,
the introduction of multiple imputation in recent releases of
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statistical software (ie, the “mi” command in Stata 11 and the
multiple imputation module in SPSS 17) may mark a leap
forward. Positive experiences with the new “mi” command in
Stata have been reported. However, under the conditions in the
presented studies, the results obtained with SPSS 17 multiple
imputation were less than optimal.

To conclude, this paper introduced both the implications and
the practical use of data techniques to a wide, nonstatistical
audience. Using the software packages tested and described in
this paper, multiple imputation is feasible for any researcher in
the eHealth field or related disciplines. The use of these
approaches may invoke a considerable improvement of the
validity of results obtained from datasets with missing values.
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